经济学习题讲解计量经济学实用精品资料(00001)_第1页
经济学习题讲解计量经济学实用精品资料(00001)_第2页
经济学习题讲解计量经济学实用精品资料(00001)_第3页
经济学习题讲解计量经济学实用精品资料(00001)_第4页
经济学习题讲解计量经济学实用精品资料(00001)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第六章自相关习题参考答案练习题6.1参考解答:()建立回归模型,回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 05/06/10 Time: 22:58Sample: 1960 1995Included observations: 36CoefficientStd. Errort-StatisticProb.X0.9358660.007467125.34110.0000C-9.4287452.504347-3.7649510.0006R-squared0.997841Mean dependent var289.9444Adjuste

2、d R-squared0.997777S.D. dependent var95.82125S.E. of regression4.517862Akaike info criterion5.907908Sum squared resid693.9767Schwarz criterion5.995881Log likelihood-104.3423Hannan-Quinn criter.5.938613F-statistic15710.39Durbin-Watson stat0.523428Prob(F-statistic)0.000000估计结果如下Se = (2.5043) (0.0075)t

3、 = (-3.7650)(125.3411)R2 = 0.9978,F = 15710.39,d f = 34,DW = 0.5234()对样本量为36、一个解释变量的模型、5%显著水平,查DW统计表可知,dL=1.411,dU= 1.525,模型中DW dU,说明广义差分模型中已无自相关。同时,判定系数R2、t、F统计量均达到理想水平。由差分方程式可以得出:所以最终的消费模型为:由上述模型可知,美国个人实际可支配收入每增加1元,个人实际消费支出平均增加0.9484元。练习题6.2参考解答:(1) 模型1中存在自相关,模型2中不存在自相关。(2) 通过DW检验可以判定自相关的存在;在模型1中,

4、DW=0.8252,查5%显著水平的DW统计表可知,因此模型1存在正自相关;而在模型2中,DW=1.82,查5%显著水平的DW统计表可知,因此模型2不存在自相关。(3) 虚假自相关是由模型设定失误所造成的自相关,主要包括遗漏某些重要的解释变量或者模型函数形式不正确,因此在区分虚假自相关和真正自相关是主要从这两个方面来判断,即根据经济意义检查解释变量是否遗漏了重要的变量,或者根据数据的数字特征检验模型形式的设定是否恰当。练习题6.3参考解答:()先对数据进行处理,收入-消费模型(个人实际收入与个人实际消费支出)个人实际消费支出=人均生活消费支出/商品零售物价指数*100建立回归模型,回归结果如下

5、:Dependent Variable: YMethod: Least SquaresDate: 05/06/10 Time: 23:20Sample: 2001 2019Included observations: 19CoefficientStd. Errort-StatisticProb.X0.6904880.01287753.620680.0000C79.9300412.399196.4463900.0000R-squared0.994122Mean dependent var700.2747Adjusted R-squared0.993776S.D. dependent var246

6、.4491S.E. of regression19.44245Akaike info criterion8.872095Sum squared resid6426.149Schwarz criterion8.971510Log likelihood-82.28490Hannan-Quinn criter.8.888920F-statistic2875.178Durbin-Watson stat0.574663Prob(F-statistic)0.000000估计结果如下()DW0.575,对样本量为36、一个解释变量的模型、5%显著水平的DW统计表可知,说明误差项存在正自相关。()采用广义差分

7、法使用普通最小二乘法估计的估计值,得由上式可知=0.657352,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: Y-0.657352*Y(-1)Method: Least SquaresDate: 05/06/10 Time: 23:25Sample (adjusted): 2002 2019Included observations: 18 after adjustmentsCoefficientStd. Errort-StatisticProb.C35.977618.1035464.4397370.0004X-0.657352*X(-1)0.

8、6686950.02064232.395120.0000R-squared0.984983Mean dependent var278.1002Adjusted R-squared0.984044S.D. dependent var105.1781S.E. of regression13.28570Akaike info criterion8.115693Sum squared resid2824.158Schwarz criterion8.214623Log likelihood-71.04124Hannan-Quinn criter.8.129334F-statistic1049.444Du

9、rbin-Watson stat1.830746Prob(F-statistic)0.000000估计结果如下DW=1.830,已知,模型中因此,在广义差分模型中已无自相关。由差分方程式可以得出:(错误)(正确)因此,修正后的回归模型应为由上述模型可知,个人实际收入每增加1元,个人实际支出平均增加0.668695元。6.4参考答案1原题(1)建立回归模型,回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/10 Time: 19:47Sample: 1970 1994Included observations: 25Coef

10、ficientStd. Errort-StatisticProb.X1.5297120.05097630.008460.0000C-68.1602615.26513-4.4650960.0002R-squared0.975095Mean dependent var388.0000Adjusted R-squared0.974012S.D. dependent var43.33397S.E. of regression6.985763Akaike info criterion6.802244Sum squared resid1122.420Schwarz criterion6.899754Log

11、 likelihood-83.02805Hannan-Quinn criter.6.829289F-statistic900.5078Durbin-Watson stat0.348288Prob(F-statistic)0.000000给定n=25,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断模型中存在正自相关。(2)对模型的修正1)采广义差分法修正自相关:使用普通最小二乘法估计的估计值,得由上式可知=0.873772,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: Y-0.873772*Y(-1)Method: Least Squa

12、resDate: 11/26/10 Time: 20:04Sample (adjusted): 1971 1994Included observations: 24 after adjustmentsCoefficientStd. Errort-StatisticProb.X-0.873772*X(-1)1.2520330.1877946.6670590.0000C3.1980657.7907390.4104960.6854R-squared0.668922Mean dependent var54.86397Adjusted R-squared0.653873S.D. dependent va

13、r6.671848S.E. of regression3.925217Akaike info criterion5.652375Sum squared resid338.9612Schwarz criterion5.750547Log likelihood-65.82850Hannan-Quinn criter.5.678420F-statistic44.44968Durbin-Watson stat1.322343Prob(F-statistic)0.000001给定n=24,,在的显著水平下,查DW统计表可知,。模型中,DW值落在了无法判断的区域。所以修正后的模型为:2)一阶差分法对模型进

14、行一阶差分,回归结果如下:Dependent Variable: Y-Y(-1)Method: Least SquaresDate: 11/26/10 Time: 20:37Sample (adjusted): 1971 1994Included observations: 24 after adjustmentsCoefficientStd. Errort-StatisticProb.X-X(-1)1.3333330.13142210.145430.0000R-squared0.652682Mean dependent var6.208333Adjusted R-squared0.65268

15、2S.D. dependent var6.678839S.E. of regression3.936084Akaike info criterion5.619023Sum squared resid356.3333Schwarz criterion5.668109Log likelihood-66.42828Hannan-Quinn criter.5.632046Durbin-Watson stat1.591830给定n=24,,在的显著水平下,查DW统计表可知,。模型中,因此模型已不存在自相关。3)德宾两步法 建立辅助回归方程,回归结果如下:Dependent Variable: YMeth

16、od: Least SquaresDate: 11/26/10 Time: 20:43Sample (adjusted): 1971 1994Included observations: 24 after adjustmentsCoefficientStd. Errort-StatisticProb.C-7.63364112.84334-0.5943660.5589X1.1726220.1885276.2199190.0000X(-1)-1.0062720.254581-3.9526660.0008Y(-1)0.8962550.1239097.2331720.0000R-squared0.99

17、2083Mean dependent var391.6667Adjusted R-squared0.990896S.D. dependent var40.10927S.E. of regression3.827019Akaike info criterion5.673061Sum squared resid292.9215Schwarz criterion5.869403Log likelihood-64.07673Hannan-Quinn criter.5.725151F-statistic835.4552Durbin-Watson stat1.369050Prob(F-statistic)

18、0.000000 把的回归系数看做的一个估计值,之后进行广义差分,回归模型为:回归结果如下:Dependent Variable: Y-0.896255*Y(-1)Method: Least SquaresDate: 11/26/10 Time: 20:47Sample (adjusted): 1971 1994Included observations: 24 after adjustmentsCoefficientStd. Errort-StatisticProb.X-0.896255*X(-1)1.2010310.1893056.3444250.0000C4.6528996.595502

19、0.7054660.4879R-squared0.646596Mean dependent var46.19771Adjusted R-squared0.630532S.D. dependent var6.352384S.E. of regression3.861224Akaike info criterion5.619501Sum squared resid327.9990Schwarz criterion5.717672Log likelihood-65.43401Hannan-Quinn criter.5.645545F-statistic40.25173Durbin-Watson st

20、at1.305817Prob(F-statistic)0.000002给定n=24,,在的显著水平下,查DW统计表可知,。模型中,DW值落在了无法判断的区域。2调换X和Y之后(1)建立回归模型,回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/04/10 Time: 11:21Sample: 1970 1994Included observations: 25CoefficientStd. Errort-StatisticProb.X0.6374370.02124230.008460.0000C50.874548.2910586

21、.1360730.0000R-squared0.975095Mean dependent var298.2000Adjusted R-squared0.974012S.D. dependent var27.97320S.E. of regression4.509491Akaike info criterion5.926864Sum squared resid467.7167Schwarz criterion6.024374Log likelihood-72.08580Hannan-Quinn criter.5.953909F-statistic900.5078Durbin-Watson sta

22、t0.352762Prob(F-statistic)0.000000给定n=25,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断模型中存在正自相关。(2)对模型的修正1)采广义差分法修正自相关:使用普通最小二乘法估计的估计值,得由上式可知=0.850961,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: Y-0.850961*Y(-1)Method: Least SquaresDate: 12/04/10 Time: 11:17Sample (adjusted): 1971 1994Included observations: 24 a

23、fter adjustmentsCoefficientStd. Errort-StatisticProb.X-0.850961*X(-1)0.5351250.0747937.1547960.0000C13.973344.7894362.9175330.0080R-squared0.699417Mean dependent var48.03762Adjusted R-squared0.685754S.D. dependent var4.550930S.E. of regression2.551144Akaike info criterion4.790616Sum squared resid143

24、.1833Schwarz criterion4.888787Log likelihood-55.48739Hannan-Quinn criter.4.816661F-statistic51.19110Durbin-Watson stat2.377660Prob(F-statistic)0.000000给定n=24,,在的显著水平下,查DW统计表可知,。模型中,因此可以判断模型不存在自相关。所以修正后的模型为:6.5参考解答:(1)建立回归模型,回归结果如下:Dependent Variable: LOG(Y)Method: Least SquaresDate: 05/07/10 Time: 0

25、0:17Sample: 1980 2000Included observations: 21CoefficientStd. Errort-StatisticProb.C2.1710410.2410259.0075290.0000LOG(X)0.9510900.03889724.451230.0000R-squared0.969199Mean dependent var8.039307Adjusted R-squared0.967578S.D. dependent var0.565486S.E. of regression0.101822Akaike info criterion-1.64078

26、5Sum squared resid0.196987Schwarz criterion-1.541307Log likelihood19.22825Hannan-Quinn criter.-1.619196F-statistic597.8626Durbin-Watson stat1.159788Prob(F-statistic)0.000000给定n=21,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断模型中存在正自相关。(2)采用广义差分法修正自相关:使用普通最小二乘法估计的估计值,得由上式可知=0.400234,对原模型进行广义差分,得到广义差分方程:回归结果如下:Depend

27、ent Variable: LOG(Y)-0.400234*LOG(Y(-1)Method: Least SquaresDate: 05/07/10 Time: 00:21Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsCoefficientStd. Errort-StatisticProb.C1.4770950.2256366.5463720.0000LOG(X)-0.400234*LOG(X(-1)0.9059890.05976715.158710.0000R-squared0.927357Mean dependent var4.882162Adjusted R-squared0.923321S.D. dependent var0.344052S.E. of regression0.095271Akaike inf

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论