



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.函数的单调性与极值教案目的要求1.理解并掌握函数最大值与最小值的意义及其求法.2.弄清函数极值与最值的区别与联络.3.养成整体思维的习惯,进步应用知识解决实际问题的才能.内容分析1.教科书结合函数图象,直观地指出函数最大值、最小值的概念,从中得出利用导数求函数最大值和最小值的方法.2.要着重引导学生弄清函数最值与极值的区别与联络.函数最大值和最小值是比较整个定义域上的函数值得出的,而函数的极值那么是比较极值点附近两侧的函数值而得出的,是部分的.3.我们所讨论的函数y=fx在a,b上有定义,在开区间a,b内有导数.在文科的数学教学中回避了函数连续的概念.规定y=fx在a,b上有定义,是为了保证
2、函数在a,b内有最大值和最小值;在a,b内可导,是为了能用求导的方法求解.4.求函数最大值和最小值,先确定函数的极大值和极小值,然后,再比较函数在区间两端的函数值,因此,用导数判断函数极大值与极小值是解决函数最值问题的关键.5.有关函数最值的实际应用问题的教学,是本节内容的难点.教学时,必须引导学生确定正确的数学建模思想,分析实际问题中各变量之间的关系,给出自变量与因变量的函数关系式,同时确定函数自变量的实际意义,找出取值范围,确保解题的正确性.从此,在函数最值的求法中多了一种非常优美而简捷的方法求导法.依教学大纲规定,有关此类函数最值的实际应用问题一般指单峰函数,而文科所涉及的函数必须是在所
3、学导数公式之内能求导的函数.教学过程1.复习函数极值的一般求法学生复述求函数极值的三个步骤.老师强调理解求函数极值时应注意的几个问题.2.提出问题用字幕打出在教科书中的图2-11中,哪些点是极大值点?哪些点是极小值点?x=a、x=b是不是极值点?在区间a,b上函数y=fx的最大值是什么?最小值是什么?一般地,设y=fx是定义在a,b上的函数,且在a,b内有导数.求函数y=fx在a,b上的最大值与最小值,你认为应通过什么方法去求解?3.分组讨论,答复以下问题学生答复:fx2是极大值,fx1与fx3都是极小值.按照极值点的定义讨论得出:fa、fb不是函数y=fx的极值.直观地从函数图象中看出:fx
4、3是最小值,fb是最大值.老师在答复完问题之后,再提问:假如在没有给出函数图象的情况下,怎样才能判断出fx3是最小值,而fb是最大值呢?与学生共同讨论,得出求函数最值的一般方法:i求y=fx在a,b内的极值极大值与极小值;ii将函数y=fx的各极值与fa、fb作比较,其中最大的一个为最大值,最小的一个为最小值.4.分析讲解例题例4 求函数y=x4-2x2+5在区间-2,2上的最大值与最小值.板书讲解,稳固求函数最值的求导法的两个步骤,同时复习求函数极值的一般求法.例5 用边长为60cm的正方形铁皮做一个无盖小箱,先在四角分别截去一个小正方形,然后把四边翻转90角,再焊接而成教科书中图2-13.
5、问水箱底边的长取多少时,水箱容积最大,最大容积为多少?用多媒体课件讲解:用课件展示题目与水箱的制作过程.分析变量与变量的关系,确定建模思想,列出函数关系式V=fx,xD.解决V=fx,xD求最值问题的方法高次函数的最值,一般采用求导的方法,提醒学生注意自变量的实际意义.用几何画板平台验证答案.5.强化训练演板P68练习6.归纳小结求函数最大值与最小值的两个步骤.解决最值应用题的一般思路.要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察才能,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、开展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察才能和语言表达才能的进步。布置作业单靠“死记还不行,还得“活用,姑且称之为“先死后活吧。让学生把一周看到或听到的新颖事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态保护区管理与规划考核试卷
- 2025标准居间合同范本
- 2025论坛版块经营承包合同示范文本
- 幼儿园快乐宝贝家教学设计
- 隧道施工操作手册
- 苏教版四年级科学上册教案
- T-JAS 16-2023 检验检测机构 产品质量安全风险监测工作 管理规范
- 旅游行业电子合同使用指南二零二五年
- 二零二五出租果树合同书范例
- 送餐员雇佣合同书范例二零二五年
- 水磨钻专项方水磨钻专项方案
- 我爱刷牙幼儿课件
- 职高英语高一试题及答案
- 2024-2025年第二学期一年级语文教学进度表
- 3.1《百合花》课件 统编版高一语文必修上册
- 会展营销学知到智慧树章节测试课后答案2024年秋上海旅游高等专科学校
- 主动脉球囊反搏术(IABP)护理
- 《关于加强中小学地方课程和校本课程建设与管理的意见》专题培训
- 2025年中考物理押题猜想卷(苏州卷)(全解全析)
- 《半导体行业发展历程》课件
- 新能源开发知识培训课件
评论
0/150
提交评论