




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、配方法的步骤:配方法的步骤:1.化化 12.移项移项3.配方配方4.求解求解配方的关键是在配方的关键是在方程两边同时添加的方程两边同时添加的常数项等于一次项系数一半的平方常数项等于一次项系数一半的平方。知识回顾知识回顾 用配方法解一元二次方程用配方法解一元二次方程 2x2x2 2+4x+1=0+4x+1=0 用配方法解一元二次方程的步骤:用配方法解一元二次方程的步骤:1.1.把原方程化成把原方程化成 x x2 2+px+q=0+px+q=0的形式。的形式。2.2.移项整理移项整理 得得 x x2 2+px=-q +px=-q 3.3.在方程在方程 x x2 2+px= -q +px= -q 的
2、两边同加上一次项系数的两边同加上一次项系数 p p的一半的平方。的一半的平方。 x x2 2+px+( )+px+( )2 2 = -q+( ) = -q+( )2 24. 4. 用直接开平方法解方程用直接开平方法解方程 (x+ )(x+ )2 2= -q= -q 知识回顾知识回顾用配方法解一般形式的一元二次方程axax2 2+bx+c=0+bx+c=0( (a0a0) )解解: :把方程两边都除以把方程两边都除以 a,a,得得x x2 2 + x+ = 0+ x+ = 0 解得解得x= - x= - 当当b b2 2-4ac0-4ac0时时, x + =, x + = 4a4a2 20 0即
3、即 ( x + )( x + )2 2 = = 配方,得配方,得 x x2 2 + x+( )+ x+( )2 2 =- +( )=- +( )2 2即即x=x=用求根公式解一元二次方程的方法叫做用求根公式解一元二次方程的方法叫做 公式法。公式法。移项,得移项,得x x2 2 + x=-+ x=-例例 用公式法解方程2x2+x-6=0。解:解:这里a=2,b=1,c=-6,所以b2-4ac=12-42(-6) =49.1、把方程化成一般形式,并写、把方程化成一般形式,并写出出a,b,c的值。的值。2、求出、求出b2-4ac的值。的值。用公式法的一般步骤:用公式法的一般步骤:求根公式求根公式:
4、x=4、写出方程的解:、写出方程的解: x1=?, x2=?3、代入、代入求根公式求根公式 x= (a0, b2-4ac0)(a0, b2-4ac0)2421491 72 24bbacxa 所以即即 x1=-2,x2=32(口答)填空:用公式法解方程(口答)填空:用公式法解方程5x2-4x-12=0。 解:解:a=a= ,b=b= ,c =c = . . b b2 2-4ac=-4ac= = = . . x= x= = = = = . .即即 x x1 1= , x= , x2 2= . = . 5 5-4-4-12-12(-4)(-4)2 2-4-45 5(-12)(-12)2562562
5、2求根公式求根公式 : x=(a0, b2-4ac0)( 4)2562 5 4 161065解解:将方程化为一般式,得将方程化为一般式,得x x2 24 4x x2 20 0242144422 acb x x4242 26 原方程的解是 x1 ,x2=6262aacbb242用公式法解下列方程:用公式法解下列方程:x24x2 用公式法解方程:用公式法解方程: x x2 2 x - =0 x - =0解:方程两边同乘以解:方程两边同乘以 3 得得 2 x2 -3x-2=0 a=2,b= -3,c= -2.b2-4ac=(-3) 2-42(-2)=25. x= x= 即即 x1=2, x2= -
6、用公式法解方程:用公式法解方程: x x2 2 +3 = 2 x+3 = 2 x 解:移项,得解:移项,得x2 2 -2 x+3 = 0 -2 x+3 = 0a=1a=1,b=-2 b=-2 ,c=3c=3b b2 2-4ac=(-2 -4ac=(-2 ) )2 2-4-41 13=03=0 x x1 1 = x= x2 2 = = = =x=x= = =3x求根公式求根公式 : x=(a0, b2-4ac0)求根公式求根公式 : x=由配方法解一般的一元由配方法解一般的一元二次方程二次方程 axax2 2+bx+c=0+bx+c=0 (a0)(a0) 若若 b b2 2-4ac0-4ac0,得,得1、把方程化成一般形式。、把方程化成一般形式。 并写出并写出a,b,c的值。的值。2、求出、求出b2-4ac的值。的值。3、代入、代入求根公式求根公式 :用公式法解一元二次方程的用公式法解一元二次方程的一般步骤:一般步骤:小结小结4、写出方程的解:、写出方程的解: x1=?, x2=?(a0, b2-4ac0)x=思考题思考题:1、用公式法解下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超声专业知识试题及答案
- 乳胶漆施工合同范本
- 山林承包经营合同
- 经济师专业试题及答案
- 郴州网络安全知识题库及答案解析
- 银行从业资格考试合格分及答案解析
- 山东省建筑安全网络题库及答案解析
- 学前卫生学自考试题及答案
- 国际经济法概论自考试题及答案
- 药典知识竞赛题及答案
- GB/T 2930.8-2017草种子检验规程水分测定
- 勘察设计工作大纲
- GB/T 17188-1997农业灌溉设备滴灌管技术规范和试验方法
- 关于国有集团公司采购管理办法【五篇】
- 2022年资阳市雁江区社区工作者招聘考试笔试试题及答案解析
- 2.2 第2课时 基本不等式的综合应用(课件)高一数学(人教A版2019必修第一册)
- 帮助卧床老年人使用便器排便课件
- 【高考英语精品专题】必修1 Unit 1 Life Choices-高考英语-一轮总复习备考方略课件PPT(新教材北师大版)
- 中国传媒大学-新媒体概论(刘行芳)-课件
- 医学放射卫生相关法律法规ppt培训课件
- 《中国音乐发展简史》PPT课件
评论
0/150
提交评论