




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、选修2-1空间向量与立体几何一、选择题:1在正三棱柱ABCA1B1C1中,若ABBB1,则AB1与C1B所成的角的大小为( )A60B90C105D75图2如图,ABCDA1B1C1D1是正方体,B1E1D1F1,则BE1与DF1所成角的余弦值是( )图ABCD3如图,A1B1C1ABC是直三棱柱,BCA=90,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是( )A BC D4正四棱锥的高,底边长,则异面直线和之间的距离( )A BC DAA1DCBB1C1图5已知是各条棱长均等于的正三棱柱,是侧棱的中点点到平面的距离( )AB CD6在棱长
2、为的正方体中,则平面与平面间的距离( )A BC D7在三棱锥PABC中,ABBC,ABBCPA,点O、D分别是AC、PC的中点,OP底面ABC,则直线OD与平面PBC所成角的正弦值( )A B C D8在直三棱柱中,底面是等腰直角三角形,侧棱,D,E分别是与的中点,点E在平面ABD上的射影是的重心G则与平面ABD所成角的余弦值( )A B CD9正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且,则二面角的大小( )A B C D10正四棱柱中,底面边长为,侧棱长为4,E,F分别为棱AB,CD的中点,则三棱锥的体积V( )A B C D二、填空题:11在正方体中,为的中点,则异面直线和间
3、的距离 12 在棱长为的正方体中,、分别是、的中点,求点到截面的距离 13已知棱长为1的正方体ABCDA1B1C1D1中,E、F分别是B1C1和C1D1的中点,点A1到平面DBEF的距离 14已知棱长为1的正方体ABCDA1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值 三、解答题:15已知棱长为1的正方体ABCDA1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小16已知棱长为1的正方体ABCDA1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF平面B1MC17在四棱锥PABCD中,底面ABCD是一直角梯形,B
4、AD=90,ADBC,AB=BC=a,AD=2a,且PA底面ABCD,PD与底面成30角(1)若AEPD,E为垂足,求证:BEPD;(2)求异面直线AE与CD所成角的余弦值18已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点(1)求证:E、F、D、B共面;(2)求点A1到平面的BDEF的距离;(3)求直线A1D与平面BDEF所成的角19如右下图,在长方体ABCDA1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E、F分别是线段AB、BC上的点,且EB= FB=1.(1) 求二面角CDEC1的正切值;(2) 求直线EC1与FD1所成的余值. 20如图,已知四棱锥P
5、-ABCD,底面ABCD是菱形,DAB=600,PD平面ABCD,PD=AD,点E为AB中点,点F为PD中点。(1)证明平面PED平面PAB; (2)求二面角P-AB-F的平面角的余弦值21:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中 心,点P在棱CC1上,且CC1=4CP.()求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);()设O点在平面D1AP上的射影是H,求证:D1HAP;()求点P到平面ABD1的距离. ABCDOS图参考答案一、1B;2A;3A;4C;分析:建立如图所示的直角坐标系,则, ,令向量,且,则,异面直线和之间的距
6、离为:5A;分析:为正方形,又平面平面,面,是平面的一个法向量,设点到平面的距离为,则= 6B;分析:建立如图所示的直角坐标系,ABCDA1B1C1D1E图设平面的一个法向量,则,即,平面与平面间的距离7D;8B;解 以C为坐标原点,CA所在直线为轴,CB所在直线为轴,所在直线为轴,建立直角坐标系, 设,则 , , , , 点E在平面ABD上的射影是的重心G, 平面ABD, ,解得 , , 平面ABD, 为平面ABD的一个法向量由 与平面ABD所成的角的余弦值为评析 因规定直线与平面所成角,两向量所成角,所以用此法向量求出的线面角应满足9A;取BC的中点O,连AO由题意 平面平面,平面,以O为
7、原点,建立如图6所示空间直角坐标系,则 , , , ,由题意 平面ABD, 为平面ABD的法向量设 平面的法向量为 ,则 , , ,即 不妨设 ,由 , 得 故所求二面角的大小为评析:(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找证求”直接简化成了一步曲:“计算”,这表面似乎谈化了学生的空间想象能力,但实质不然,向量法对学生的空间想象能力要求更高,也更加注重对学生创新能力的培养,体现了教育改革的精神(2)此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若取时,会算得,从而所求二面角为,但依题意只为因为二面角的大小有时为锐角、直角,有时也为钝角所以在计
8、算之前不妨先依题意判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”10C;解 以D为坐标原点,建立如图10所示的直角坐标系,则 , , , 图10 , ,所以 ,设 平面的方程为:,将点代入得, , 平面的方程为:,其法向量为, 点到平面的距离, 即为所求评析 (1)在求点到平面的距离时,有时也可直接利用点到平面的距离公式 计算得到(2) 法向量在距离方面除应用于点到平面的距离、多面体的体积外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等二、11分析:设正方体棱长为,以为原点,建立如图所示的空间直角坐标系,则,设和公垂线段上的向量为,则,即,又,所以异面直线和间
9、的距离为12分析:以为原点,建立如图所示的空间直角坐标系AEA1DCBB1C1D1F图则,;设面的法向量为,则有:,又,所以点到截面的距离为=131;解:如图建立空间直角坐标系,(1,1,0) ,(0,1), (1,0,1) 设平面DBEF的法向量为(x,y,z),则有: 即 xy0 yz0zxBA1yFEB1C1D1DCA令x1, y=1, z=, 取(1,1,),则A1到平面DBEF的距离EzxD1yAC1B1A1BDC14解:如图建立空间直角坐标系,(0,1,0),(1,0,1),(0,1)设平面ABC1D1的法向量为(x,y,z),由 可解得(1,0,1) 设直线AE与平面ABC1D1
10、所成的角为,则, 三、15 zyxD1A1DB1C1CBA解:如图建立空间直角坐标系,(1,1,0),(0,1,1) 设、分别是平面A1BC1与平面ABCD的法向量, 由 可解得(1,1,1)易知(0,0,1),所以,所以平面A1BC1与平面ABCD所成的二面角大小为arccos或 arccos注:用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求 出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小16FyEMxzD1C1B1A1CDBA证明:如图建立空间直角坐标系, 则(1,1,0),(1,0,1) (1,0,1), (0,1,1)设,(、 ,且
11、均不为0) 设、分别是平面A1EF与平面B1MC的法向量, 由 可得 即 解得:(1,1,1) 由 可得 即 解得(1,1,1),所以, , 所以平面A1EF平面B1MC注:如果求证的是两个平面垂直,也可以求出两个平面的法向量后,利用来证明17(1)证明:PA平面ABCD,PAAB,又ABADAB平面PAD又AEPD,PD平面ABE,故BEPD(2)解:以A为原点,AB、AD、AP所在直线为坐标轴,建立空间直角坐标系,则点C、D的坐标分别为(a,a,0),(0,2a,0)PA平面ABCD,PDA是PD与底面ABCD所成的角,PDA=30于是,在RtAED中,由AD=2a,得AE=a过E作EFAD,垂足为F,在RtAFE中,由AE=a,EAF=60,得AF=,EF=a,E(0,a)于是,=a,a,0设与的夹角为,则由cos=AE与CD所成角的余弦值为评述:第(2)小题中,以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022酒店主管半年度工作总结简短
- 景观照明提升工程可行性研究报告
- 家居科技产业园项目实施方案(范文参考)
- 环保型植保产品建设项目初步设计(范文)
- 管理学组织设计的原则
- 数控装调与维修实训安全教育
- 心理护理伦理课件
- 河南省开封市五县联考2023-2024学年高二上学期期中考数学含解析
- 2025年开展安全生产月活动实施方案
- 德宏师范高等专科学校《现当代文学作品》2023-2024学年第二学期期末试卷
- 智联网汽车技术 课件 13.9自动紧急制动系统
- DBJT13-323-2019 土壤固化剂应用技术规程
- 2025年日历表全年(打印版)完整清新每月一张
- 2025年中国外运股份有限公司招聘笔试参考题库含答案解析
- 《儿童插画的设计》课件
- 2025年西昌市公开招聘国企业工作人员高频重点提升(共500题)附带答案详解
- 2025届湖北武汉市高考仿真模拟数学试卷含解析
- 《艾滋病患者的护理》课件
- 工业园区火灾隐患整改管理制度
- 2024年浙江化工行业职业技能竞赛(化工总控工赛项)理论考试题库及答案
- 马工程管理学自测题
评论
0/150
提交评论