高中数学线性规划练习题_第1页
高中数学线性规划练习题_第2页
高中数学线性规划练习题_第3页
高中数学线性规划练习题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、线性规划一、选择题(本大题共10小题,每小题5分,共50分)1不在 3x+ 2y < 6 表示的平面区域内的一个点是 ( ) A(0,0)B(1,1)C(0,2)D(2,0)2已知点(3 , 1)和点(4 , 6)在直线 3x2y + m = 0 的两侧,则 ( )Am7或m24B7m24Cm7或m24D7m 243若,则目标函数 z = x + 2 y 的取值范围是 ( )A2 ,6B 2,5C 3,6D 3,54不等式表示的平面区域是一个( )A三角形B直角三角形C梯形D矩形5在ABC中,三顶点坐标为A(2 ,4),B(1,2),C(1 ,0 ), 点P(x,y)在ABC内部及边界运

2、动,则 z= x y 的最大值和最小值分别是 ( )A3,1B1,3C1,3D3,16在直角坐标系中,满足不等式 xy20 的点(x,y)的集合(用阴影部分来表示)的是 ( ) A B C D7不等式表示的平面区域内的整点个数为( )A 13个 B 10个 C 14个 D 17个8不等式表示的平面区域包含点和点则的取值范围是( )AB CD oxy9已知平面区域如右图所示,在平面区域内取得最大值的最优解有无数多个,则的值为( ) A B C D不存在10如图所示,表示阴影部分的二元一次不等式组是( )A B C D二、填空题(本题共4小题,每小题6分,共24分)11已知x,y满足约束条件 ,则

3、的最小值为_12某电脑用户计划用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘,根据需要软件至少买3件,磁盘至少买2盒,则不同的选购方式共有_种.13已知约束条件,目标函数z=3x+y,某学生求得x=, y=时,zmax=, 这显然不合要求,正确答案应为x= ; y= ; zmax= .14已知x,y满足,则的最大值为_,最小值为_三、解答题(本大题共6题,共76分)15由围成的几何图形的面积是多少?(12分)16已知当a为何值时,直线及坐标轴围成的平面区域的面积最小? 方式种类轮船飞机小麦 300吨150吨大米250吨100吨17有两种农作物(大米和小麦),可用轮船和飞

4、机两种方式运输,每天每艘轮船和每架飞机运输效果如下:在一天内如何安排才能合理完成运输2000吨小麦和1500吨大米的任务?(12分)18设,式中变量满足条件,求z的最小值和最大值(12分)工艺要求产品甲产品乙生产能力/(台/天)制白坯时间/天612120油漆时间/天8464单位利润/元2024 19某家俱公司生产甲、乙两种型号的组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下:问该公司如何安排甲、乙二种柜的日产量可获最大利润,并且最大利润是多少?(14分)20某运输公司接受了向抗洪抢险地区每天至少送180t支援物资的任务.该公司有8辆载重为6t的A型卡车与4辆载重为10t的B型卡

5、车,有10名驾驶员;每辆卡车每天往返的次数为A型卡车4次,B型卡车3次;每辆卡车每天往返的成本费A型车为320元,B型车为504元.请你们为该公司安排一下应该如何调配车辆,才能使公司所花的成本费最低?若只调配A型或B型卡车,所花的成本费分别是多少?(14分)参考答案一选择题(本大题共10小题,每小题5分,共50分)题号12345678910答案DBACCBAAAC二填空题(本大题共4小题,每小题6分,共24分)11 127 133,2,11 14 2,0三、解答题(本大题共6题,共76分)xyOCBDE15(12分)解析:如下图由围成的几何图形就是其阴影部分,且. (2,2)(2,2)y=xy

6、=x+1(1,2)(1,2)y=xy=x+116(12分)解析: 如图,由题意知及坐标轴围成的平面区域为ACOD,17(12分)解析:设轮船为x艘、飞机为y架,则可得,目标函数z=x+y,作出可行域,利用图解法可得点A(,0)可使目标函数z=x+y最小,但它不是整点,调整为B(7,0)答:在一天内可派轮船7艘,不派飞机能完成运输任务AxyOC-11B(1,1)218(12分)解析: 作出满足不等式的可行域,如右图所示.作直线19(14分)解析:设x,y分别为甲、乙二种柜的日产量,可将此题归纳为求如下线性目标函数Z=20x+24y的最大值.其中线性约束条件为 ,由图及下表(x,y)Z=20x+24y(0,10)240(0,0)0(8,0)160(4,8)272Zmax=272 答:该公司安排甲、乙二种柜的日产量分别为4台和8台可获最大利润272元.A型车B型车物资限制载重(t)610共180车辆数84出车次数43每车每天运输成本(元)320504 x+y=10 4 3 2 1 4 5 6 7 84x+5y=3020(14分)解:设每天调出A型车x辆、B型车y辆,公司所花的成本为z元,则目标函数z=320x+504y, 作出可行域(如上图),作L:320x+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论