




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法m w.w例1 在数列中,,,求通项公式.解:原递推式可化为:则 ,逐项相加得:.故.二、作商求和法例2 设数列是首项为1的正项数列,且(n=1,2,3),则它的通项公式是=(2000年高考15题)解:原递推式可化为: =0 0, 则 , 逐项相乘得:,即=.三、换元法例3 已知数列,其中,且当n3时,求通项公式(1986年高考文科第八题改编).解:设,原递推式可化为: 是一个等比数列,公比为.故.故.由逐差法可得:. 例4已知
2、数列,其中,且当n3时,求通项公式。解 由得:,令,则上式为,因此是一个等差数列,公差为1.故.。由于又所以,即 四、积差相消法 例5(1993年全国数学联赛题一试第五题)设正数列,满足= 且,求的通项公式.解 将递推式两边同除以整理得:设=,则=1,故有 ()由+ +()得=,即=.逐项相乘得:=,考虑到,故 . 五、取倒数法例6 已知数列中,其中,且当n2时,求通项公式。解 将两边取倒数得:,这说明是一个等差数列,首项是,公差为2,所以,即.六、取对数法例7 若数列中,=3且(n是正整数),则它的通项公式是=(2002年上海高考题).解 由题意知0,将两边取对数得,即,所以数列是以=为首项
3、,公比为2的等比数列, ,即.七、平方(开方)法例8 若数列中,=2且(n),求它的通项公式是.解 将两边平方整理得。数列是以=4为首项,3为公差的等差数列。因为0,所以。八、待定系数法待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,可以少走弯路.其变换的基本形式如下:1、(A、B为常数)型,可化为=A()的形式.例9 若数列中,=1,是数列的前项之和,且(n),求数列的通项公式是.解 递推式可变形为 (1)设(1)式可化为 (2)比较(1)式与(2)式的系数可得,则有。故数列是以为首项,3为公比的等比数列。=。所以。当n,。数列的通项公式是 。2、(A、B、C为常数,下同)
4、型,可化为=)的形式.例10 在数列中,求通项公式。解:原递推式可化为: 比较系数得=-4,式即是:.则数列是一个等比数列,其首项,公比是2. 即.3、型,可化为的形式。例11 在数列中,当, 求通项公式.解:式可化为:比较系数得=-3或=-2,不妨取=-2.式可化为:则是一个等比数列,首项=2-2(-1)=4,公比为3.利用上题结果有:.4、型,可化为的形式。例12 在数列中,=6 求通项公式.解 式可化为: 比较系数可得:=-6, 式为是一个等比数列,首项,公比为.即 故.九、猜想法 运用猜想法解题的一般步骤是:首先利用所给的递推式求出,然后猜想出满足递推式的一个通项公式,最后用数学归纳法
5、证明猜想是正确的。例13 在各项均为正数的数列中,为数列的前n项和,=+ ,求其通项公式。 求递推数列通项的特征根法与不动点法一、形如是常数)的数列 形如是常数)的二阶递推数列都可用特征根法求得通项,其特征方程为 若有二异根,则可令是待定常数) 若有二重根,则可令是待定常数) 再利用可求得,进而求得例1已知数列满足,求数列的通项解:其特征方程为,解得,令,由,得, 例2已知数列满足,求数列的通项解:其特征方程为,解得,令,由,得, 二、形如的数列 对于数列,是常数且) 其特征方程为,变形为 若有二异根,则可令(其中是待定常数),代入的值可求得值 这样数列是首项为,公比为的等比数列,于是这样可求得 若有二重根,则可令(其中是待定常数),代入的值可求得值 这样数列是首项为,公差为的等差数列,于是这样可求得此方法又称不动点法例3已知数列满足,求数列的通项解:其特征方程为,化简得,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB 6537-20253号喷气燃料
- 2025广西钦州市钦南区林业局招聘1人考前自测高频考点模拟试题及一套完整答案详解
- 2025第十三届贵州人才博览会贵阳贵安事业单位引进高层次及急需紧缺人才770人考前自测高频考点模拟试题及一套完整答案详解
- 2025河南郑州高新区枫杨社区卫生服务中心招聘考前自测高频考点模拟试题及一套参考答案详解
- 2025年中国混凝土预制板行业市场分析及投资价值评估前景预测报告
- 冬季防静电安全知识培训课件
- 2025贵阳学院人才引进15人模拟试卷及1套完整答案详解
- 2025年度哈尔滨“丁香人才周”(春季)方正县事业单位引才招聘95人考前自测高频考点模拟试题及完整答案详解1套
- 2025年中国环己硅氧烷行业市场分析及投资价值评估前景预测报告
- 2025广西港口区农业农村水利局计划招募港口区基层农机推广特聘岗位1人考前自测高频考点模拟试题带答案详解
- 2026三维设计一轮总复习高中化学-第17讲 卤族元素 溴、碘单质的提取
- 手术部(室)医院感染控制标准WST855-2025解读课件
- 2026年高考数学一轮复习三维设计创新-微拓展 圆锥曲线中的二级结论
- 2025中央八项规定精神学习教育知识测试竞赛试卷题库及答案
- 医学研究生中期研究进展汇报
- 医务人员院感考试试题及答案
- 软件系统运维操作手册
- 以镜为笔:体育新闻摄影对新闻内涵的深度开掘与多元表现
- 医院人事编制管理制度
- (二模)2025年5月济南市高三高考针对性训练英语试卷(含答案解析)
- 中国当代知名作家鲁迅生平介绍课件
评论
0/150
提交评论