




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、% 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x0,10 % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(210-1)0.01 。 % % 将变量域 0,10 离散化为二值域 0,1023, x=0+10*b/1023, 其中 b 是 0,1023 中的一个二值数。 % 编程 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进
2、制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength); % rand随机产生每个单元为 0,1 行数为popsize,列数为chromlength的矩阵, % round对矩阵的每个单元进行圆整。这样产生的初始种群。 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 2n 2(n-1) . 1 的行向量,然
3、后求和,将二进制转化为十进制 function pop2=decodebinary(pop) px,py=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 1表示每列相加,2表示每行相加% 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置 % (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另
4、一个变量从11开始。本例为1), % 参数1ength表示所截取的长度(本例为10)。 %遗传算法子程序 %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 2.2.3 计算目标函数值 % calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。 %遗传算法子程序 %Name: calobjvalue.m %实现目
5、标函数的计算 function objvalue=calobjvalue(pop) temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数 x=temp1*10/1023; %将二值域 中的数转化为变量域 的数 objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值 2.3 计算个体的适应值 %遗传算法子程序 %Name:calfitvalue.m %计算个体的适应值 function fitvalue=calfitvalue(objvalue) global Cmin; Cmin=0; px,py=size(objvalue); f
6、or i=1:px if objvalue(i)+Cmin>0 temp=Cmin+objvalue(i); else temp=0.0; end fitvalue(i)=temp; end fitvalue=fitvalue' 2.4 选择复制 % 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。 % 根据方程 pi=fi/fi=fi/fsum ,选择步骤: % 1) 在第 t 代,由(1)式计算 fsum 和 pi % 2) 产生 0,1 的随机数 rand( .),求 s=rand( .)*fsum % 3) 求 fis 中最小的
7、k ,则第 k 个个体被选中 % 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群 %遗传算法子程序 %Name: selection.m %选择复制 function newpop=selection(pop,fitvalue) totalfit=sum(fitvalue); %求适应值之和 fitvalue=fitvalue/totalfit; %单个个体被选择的概率 fitvalue=cumsum(fitvalue); %如 fitvalue=1 2 3 4,则 cumsum(fitvalue)=1 3 6 10 px,py=size(pop); ms=so
8、rt(rand(px,1); %从小到大排列 fitin=1; newin=1; while newin<=px if(ms(newin)<fitvalue(fitin) newpop(newin)=pop(fitin); newin=newin+1; else fitin=fitin+1; end end 2.5 交叉 % 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置 % (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为: % x1=0100110 % x2=1
9、010001 % 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为: % y10100001 % y21010110 % 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。 % 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。 %遗传算法子程序 %Name: crossover.m %交叉 function newpop=crossover(pop,pc) px,py=size(pop); newpop=ones(size(pop); for i=1:2:px-1 if(rand<pc) cp
10、oint=round(rand*py); newpop(i,:)=pop(i,1:cpoint),pop(i+1,cpoint+1:py); newpop(i+1,:)=pop(i+1,1:cpoint),pop(i,cpoint+1:py); else newpop(i,:)=pop(i); newpop(i+1,:)=pop(i+1); end end % 2.6 变异 % 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”, % 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能
11、存在的整个空间,因此可以在一定程度上求得全局最优解。 %遗传算法子程序 %Name: mutation.m %变异 function newpop=mutation(pop,pm) px,py=size(pop); newpop=ones(size(pop); for i=1:px if(rand<pm) mpoint=round(rand*py); if mpoint<=0 mpoint=1; end newpop(i)=pop(i); if any(newpop(i,mpoint)=0 newpop(i,mpoint)=1; else newpop(i,mpoint)=0; e
12、nd else newpop(i)=pop(i); end end % 2.7 求出群体中最大得适应值及其个体 %遗传算法子程序 %Name: best.m %求出群体中适应值最大的值 function bestindividual,bestfit=best(pop,fitvalue) px,py=size(pop); bestindividual=pop(1,:); bestfit=fitvalue(1); for i=2:px if fitvalue(i)>bestfit bestindividual=pop(i,:); bestfit=fitvalue(i); end end %
13、2.8 主程序 %遗传算法主程序 %Name:genmain05.m clear clf popsize=20; %群体大小 chromlength=10; %字符串长度(个体长度) pc=0.6; %交叉概率 pm=0.001; %变异概率 pop=initpop(popsize,chromlength); %随机产生初始群体 for i=1:20 %20为迭代次数 objvalue=calobjvalue(pop); %计算目标函数 fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度 newpop=selection(pop,fitvalue);
14、%复制 newpop=crossover(pop,pc); %交叉 newpop=mutation(pop,pc); %变异 bestindividual,bestfit=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值 y(i)=max(bestfit); n(i)=i; pop5=bestindividual; x(i)=decodechrom(pop5,1,chromlength)*10/1023; pop=newpop; end fplot('10*sin(5*x)+7*cos(4*x)',0 10) hold on plot(x,y,
15、39;r*') hold off z index=max(y); %计算最大值及其位置 x5=x(index)%计算最大值对应的x值 y=z 【问题】求f(x)=x10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 【程序清单】 %编写目标函数 functionsol,eval=fitness(sol,options) x=sol(1); eval=x 10*sin(5*x) 7*cos(4*x); %把上述函数存储为fitness.m文件并放在工
16、作目录下 initPop=initializega(10,0 9,'fitness');%生成初始种群,大小为10 x endPop,bPop,trace=ga(0 9,'fitness',initPop,1e-6 1 1,'maxGenTerm',25,'normGeomSelect',. 0.08,'arithXover',2,'nonUnifMutation',2 25 3) %25次遗传迭代 运算借过为:x = 7.8562 24.8553(当x为7.8562时,f(x)取最大值24.855
17、3) 注:遗传算法一般用来取得近似最优解,而不是最优解。 遗传算法实例2 【问题】在5<=Xi<=5,i=1,2区间内,求解 f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.2 x2.2)-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2) 22.71282的最小值。 【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】 源函数的matlab代码 function eval=f(sol) numv=size(sol,2); x=sol(1:numv); eval=-20*exp(-0.2*sqrt(sum(x.2)
18、/numv)-exp(sum(cos(2*pi*x)/numv) 22.71282; %适应度函数的matlab代码 function sol,eval=fitness(sol,options) numv=size(sol,2)-1; x=sol(1:numv); eval=f(x); eval=-eval; %遗传算法的matlab代码 bounds=ones(2,1)*-5 5; p,endPop,bestSols,trace=ga(bounds,'fitness') 注:前两个文件存储为m文件并放在工作目录下,运行结果为 p = 0.0000 -0.0000 0.0055
19、 大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令: fplot('x 10*sin(5*x) 7*cos(4*x)',0,9) evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。 【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目
20、为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 【程序清单】 %编写目标函数 functionsol,eval=fitness(sol,options) x=sol(1); eval=x+10*sin(5*x)+7*cos(4*x); %把上述函数存储为fitness.m文件并放在工作目录下 initPop=initializega(10,0 9,'fitness');%生成初始种群,大小为10 x endPop,bPop,trace=ga(0 9,'fitness',initPop,1e-6 1 1,'maxGenTerm'
21、;,25,'normGeomSelect',. 0.08,'arithXover',2,'nonUnifMutation',2 25 3) %25次遗传迭代 运算借过为:x = 7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553) 注:遗传算法一般用来取得近似最优解,而不是最优解。 遗传算法实例2 【问题】在5<=Xi<=5,i=1,2区间内,求解 f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.2+x2.2)-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)+
22、22.71282的最小值。 【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】 源函数的matlab代码 function eval=f(sol) numv=size(sol,2); x=sol(1:numv); eval=-20*exp(-0.2*sqrt(sum(x.2)/numv)-exp(sum(cos(2*pi*x)/numv)+22.71282; %适应度函数的matlab代码 function sol,eval=fitness(sol,options) numv=size(sol,2)-1; x=sol(1:numv); eval=f(x); eva
23、l=-eval; %遗传算法的matlab代码 bounds=ones(2,1)*-5 5; p,endPop,bestSols,trace=ga(bounds,'fitness') 注:前两个文件存储为m文件并放在工作目录下,运行结果为 p = 0.0000 -0.0000 0.0055 大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令: fplot('x+10*sin(5*x)+7*cos(4*x)',0,9) evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops
24、是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数matlab遗传算法工具箱函数及实例讲解核心函数: (1)function pop=initializega(num,bounds,eevalFN,eevalOps,options)-初始种群的生成函数【输出参数】 pop-生成的初始种群【输入参数】 num-种群中的个体数目 bounds-代表变量的上下界的矩阵 eevalFN-适应度函数 eevalOps-传递给适应度函数的参数 options-选择编码形式(浮点编码或是二进制编码)pr
25、ecision F_or_B,如 precision-变量进行二进制编码时指定的精度 F_or_B-为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function x,endPop,bPop,traceInfo = ga(bounds,evalFN,evalOps,startPop,opts,. termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)-遗传
26、算法函数【输出参数】 x-求得的最优解 endPop-最终得到的种群 bPop-最优种群的一个搜索轨迹【输入参数】 bounds-代表变量上下界的矩阵 evalFN-适应度函数 evalOps-传递给适应度函数的参数 startPop-初始种群 optsepsilon prob_ops display-opts(1:2)等同于initializega的options参数,第
27、三个参数控制是否输出,一般为0。如1e-6 1 0 termFN-终止函数的名称,如'maxGenTerm' termOps-传递个终止函数的参数,如100 selectFN-选择函数的名称,如'normGeomSelect' selectOps-传递个选择函数的参数,如0.08 xOverFNs-交叉函数名称表,以空格分开,如'arithXover heuristicXover simpleXover' &
28、#160; xOverOps-传递给交叉函数的参数表,如2 0;2 3;2 0 mutFNs-变异函数表,如'boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation' mutOps-传递给交叉函数的参数表,如4 0 0;6 100 3;4 100 3;4 0 0注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码
29、,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 【程序清单】 %编写目标函数 functionsol,eval=fitness(sol,options) x=sol(1); eval=x+10*sin(5*x)+7*cos(4*x); %把上述函数存储为fitness.m文件并放在工作目录下 initPop=initial
30、izega(10,0 9,'fitness');%生成初始种群,大小为10 x endPop,bPop,trace=ga(0 9,'fitness',initPop,1e-6 1 1,'maxGenTerm',25,'normGeomSelect',. 0.08,'arithXover',2,'nonUnifMutation',2 25 3) %25次遗传迭代运算借过为:x = 7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553) 注:遗传算法一般用来取得近似最优解,而不是最优解。遗传算法实例2 【问题】在5<=Xi<=5,i=1,2区间内,求解 f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.2+x2.2)-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)+22.71282的最小值。【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】 源函数的matlab代码
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家政公司老年看护与生活照料服务合同
- 母婴护理品牌授权合作协议
- 跨境电商数据存储备份及安全防护协议
- 抖音网络直播股权分置及管理协议
- 花园相邻权界定与土地交易合同
- 蔬菜大棚种植项目与农业保险合作协议
- 智能家居设备进出口代理服务与智能家居解决方案合同
- 临床输血医学检验技术
- 《小猫咪和小兔子:动物友谊教学课件》
- 政薪火相传的传统美德课件-2024-2025学年统编版道德与法治七年级下册
- 2025年特种设备安全操作实务考试真题卷
- 人教版小学数学六年级下册说课稿
- 2024年北京石景山区公开招聘社区工作者考试试题答案解析
- 地铁事件面试题及答案
- 2025年共青团入团积极分子考试测试试卷题库及答案
- 科技安全课件
- 维克多高中英语3500词汇
- 路灯设施维修施工组织设计
- 执业医师注册健康体检表
- 普通高等学校毕业生 毕业研究生就业协议书
- 地铁通信工程漏缆卡具安装作业指导书
评论
0/150
提交评论