


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学八年级平行线的证明知识点数学八年级平行线的证明知识点 1、为什么要证明 实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明 2、定义与命题 证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义 判断一件事情的句子,叫做命题 一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果.那么.的形式,其中“如果引出的部分是条件,“那么引出的部分是结论 正确的命题称为真命题,不正确
2、的命题称为假命题 要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例 欧几里得在编写原本时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断 演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明 a. 本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线 b. 两点之间线段最短 c. 同一平面内,过一点有且只有一条直线与已知直线垂直 d. 两条
3、直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行) e. 过直线外一点有且只有一条直线与这条直线平行 f. 两边及其夹角分别相等的两个三角形全等 g. 两角及其夹边分别相等的两个三角形全等 h. 三边分别相等的两个三角形全等 此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据 定理:同角(等角)的补角相等 同角(等角)的余角相等 三角形的任意两边之和大于第三边 对顶角相等 3、平行线的判定 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行 定理:两条直线被第三条
4、直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。 4、平行线的性质 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补 定理:平行于同一条直线的两条直线平行 5、三角形内角和定理 三角形内角和定理:三角形的内角和等于180° 定理:三角形的一个外角等于和它不相邻的两个内角的和 定理:三角形的一个外角大于任何一个和它不相邻的内角 我们通过三角形的内角和定理直接推导
5、出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。 初中常考数学公式 乘法与因式分:a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 一元二次方程的解:-b+(b2-4ac)/2a -b-(b2-4ac)/2a 抛物线标准方程:y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积:S=cxh 斜棱柱侧面积:S=cxh 正棱锥侧面积:S=1/2cxh 正棱台侧面积:S=1/2(c+c)h 圆台侧面积:S=1/2(c+c)l=pi(R+r)l 球的表面积:S=4pixr2 圆柱侧面积:S=cxh=2pixh 初中数学线段的性质 (1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。 (2)连接两点的线段的长度,叫做这两点的距离。 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/ZHCA 604-2023消毒产品中激素含量的测定液相色谱-串联质谱法
- 2025西北工业大学辅导员考试试题及答案
- 2025辽宁职业学院辅导员考试试题及答案
- 2025贵州水利水电职业技术学院辅导员考试试题及答案
- 2025贵阳信息科技学院辅导员考试试题及答案
- 2025牡丹江师范学院辅导员考试试题及答案
- 2025白城师范学院辅导员考试试题及答案
- 食堂食品卫生管理
- 新疆水发准水建设开发有限公司招聘笔试题库2025
- T/YWEISA 001-2022装配式不锈钢水处理构筑物安装技术规程
- openstack云计算平台搭建课件
- 劳务实名制及农民工工资支付管理考核试题及答案
- 装饰艺术运动课件
- 金融市场学课件(完整版)
- 【审计工作底稿模板】FH应付利息
- 胃肠减压技术操作流程.
- 工贸企业安全管理台账资料
- 三方协议书(消防)
- 工序能耗计算方法及等级指标
- 预激综合征临床心电图的当前观点
- 阀门检修作业指导书讲解
评论
0/150
提交评论