




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、有理数 1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数Û 0和正整数;a0 Û a是正数;a0 Û a是负数;a0 Û a是正数或0 Û a是非负数;a 0 Û a是负数或0 Û a是非正数.2数轴:数轴
2、是规定了原点、正方向、单位长度的一条直线.3相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;(3) ; ;(4) |a|是重要的非负数,即|a|0;注意:|a|·|b|=|a
3、3;b|, .5.有理数比大小:1正数的绝对值越大,这个数越大;2正数永远比0大,负数永远比0小;3正数大于一切负数;4两个负数比大小,绝对值大的反而小;5数轴上的两个数,右边的数总比左边的数大;6大数-小数 0,小数-大数 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;假设 a0,那么的倒数是;倒数是本身的数是±1;假设ab=1Û a、b互为倒数;假设ab=-1Û a、b互为负倒数.7. 有理数加法法那么:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3一个数与0相加,仍得这个
4、数.8有理数加法的运算律:1加法的交换律:a+b=b+a ;2加法的结合律:a+b+c=a+b+c.9有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+-b.10 有理数乘法法那么:1两数相乘,同号为正,异号为负,并把绝对值相乘;2任何数同零相乘都得零;3几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1) 乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac .12有理数除法法那么:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13有理数乘方的法那么:1正数的任何
5、次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;3a2是重要的非负数,即a20;假设a2+|b|=0 Û a=0,b=0;4据规律 底数的小数点移动一位,平方数的小数点移动二位.15科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数
6、的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法那么:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原那么.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。几何图形分为立体图形和平面图形。2、有些几何图形如长方体、正方体、圆柱、圆锥、球等的各局部不都在同一平面内,它们是立体图形。3、有些几何图形如线段、角、三角形、长方形、圆
7、等的各局部都在同一平面内,它们是平面图形。4、将由平面图形围成的立体图形外表适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。5、长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。几何体简称为体。6、包围着体的是面,面有平的面和曲的面两种。7、面与面相交的地方形成线线有直的和曲的,线和线相交的地方是点点无大小之分。8、点动成线,线动成面,面动成体。9、几何图形都是由点、线、面、体组成的,点是构成图形的根本元素。10、正方体的11种展开图:“141型,中间一行4个作侧面,上下两个各作为上下底面,共有6种根本图形。“132型,中间3个作侧面,共3种根本图形。 “
8、222型,两行只能有1个正方形相连。、“33型,两行只能有1个正方形相连。 11、经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线公理。12、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。13、射线和线段都是直线的一局部。14、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。15、两点的所有连线中,线段最短。简单说成:两点之间,线段最短。公理16、连接两点间的线段的长度,叫做这两点的距离。17、一般地,用一个大写字母表示一个点,用两个大写字母也就是两个点或者一个小写字母来表示直线。18、有公共端点的两条射线组成的图形叫做角,
9、这个公共端点是角的顶点,这两条射线是角的两条边。19、把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1;把1分的角60等分,每一份叫做1秒的角,记作1。20、角的度、分、秒是60进制的。21、以度、分、秒为单位的角的度量制,叫做角度制。22、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。23、如果两个角的和等于90°直角,就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。24、如果两个角的和等于180°平角,就说这两个角互为补角,即其中一个角是另一个角的补角。25、等角的补角相等,
10、等角的余角相等。代数初步知识 1. 代数式:用运算符号“ × ÷ 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个本卷须知:1数与字母相乘,或字母与字母相乘通常使用“· 乘,或省略不写;2数与数相乘,仍应使用“×乘,不用“· 乘,也不能省略乘号;3数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;4带分数与字母相乘时,要把带分数改成假分数形式,如a×应写
11、成a;5在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;6a与b的差写作a-b,要注意字母顺序;假设只说两数的差,当分别设两数为a、b时,那么应分类,写做a-b和b-a .3.几个重要的代数式:m、n表示整数 1a与b的平方差是: a2-b2 ; a与b差的平方是:a-b2 ; 2假设a、b、c是正整数,那么两位整数是: 10a+b ,那么三位整数是:100a+10b+c;3假设m、n是整数,那么被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;4假设b0,那么正数是:a2+b ,负数是: -a
12、2-b ,非负数是: a2 ,非正数是:-a2 .整式的加减 1单项式:在代数式中,假设只含有乘法包括乘方运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3多项式:几个单项式的和叫多项式.4多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:假设a、b、c、p、q是常数ax2+bx+c和x2+px+q是常见的两个二次三项式.5整式:凡不含有除法运算,或虽含有除
13、法运算但除式中不含字母的代数式叫整式.整式分类为: .6同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7合并同类项法那么:系数相加,字母与字母的指数不变.8去添括号法那么:去添括号时,假设括号前边是“+号,括号里的各项都不变号;假设括号前边是“-号,括号里的各项都要变号.9整式的加减:整式的加减,实际上是在去括号的根底上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大或从大到小排列起来,叫做按这个字母的升幂排列或降幂排列.注意:多项式计算的最后结果一般应该进行升幂或降幂排列.一元一次方程 1等式与等量:用“=号连接而成的式子叫等
14、式.注意:“等量就能代入!2等式的性质: 等式性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以或除以同一个不为零的数,所得结果仍是等式.3方程:含未知数的等式,叫方程.4方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入!5移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7一元一次方程的标准形式: ax+b=0x是未知数,a、b是数,且a0.8一元一次方程的最简形式: ax=bx是未知数,
15、a、b是数,且a0.9一元一次方程解法的一般步骤: 整理方程 去分母 去括号 移项 合并同类项 系数化为1 检验方程的解.10列一元一次方程解应用题: 1读题分析法: 多用于“和,差,倍,分问题仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.2画图分析法: 多用于“行程问题利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,依照题意画出有关图形,使图形各局部具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系可把未知数看做量,填入有关的代数式是获得方程的根底.11列方程解应用题的常用公式:1行程问题: 距离=速度·时间 ;2工程问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 备考思路深度剖析2025年执业医师考试试题及答案
- 自考行政管理考试复习材料及试题答案
- 护理适宜技术试题及答案回顾
- 经济法概论复习试题及答案
- 经济法概论核心知识点试题及答案
- 行政决策过程的试题及答案
- 中西药结合的有效性与安全性试题及答案
- 主管护师考试应知应会知识试题及答案
- 行政管理专业语文备考试题与答案
- 2025年护师考试的潜在风险试题及答案
- 上海中考数学考试大纲
- GB/T 1965-2023多孔陶瓷室温弯曲强度试验方法
- 一种改进的ip-q谐波电流检测方法
- 担保书之第三方担保合同模板
- 南京大屠杀资料
- 独醒之累:郭嵩焘与晚清大变局
- 河道治理水葫芦施工方案
- 眼科门诊病历(清晰整齐)
- 学校专任教师基本情况统计样表
- 焊接工艺评定报告模板
- 初中完形填空专项训练40篇(含答案)
评论
0/150
提交评论