




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上5.6.证明:(1).如果是对称正定矩阵,则也是对称正定矩阵(2).如果是对称正定矩阵,则可以唯一地写成,其中是具有正对角元的下三角矩阵。证明:(1).因是对称正定矩阵,故其特征值皆大于,因此的特征值也皆大于。因此也皆大于,故是可逆的。又则也是对称正定矩阵。(2).由是对称正定,故它的所有顺序主子阵均不为零,从而有唯一的杜利特尔分解。又其中为对角矩阵,为上三角矩阵,于是由的对称性,得由分解的唯一性得从而由的对称正定性,如果设表示的各阶顺序主子式,则有,故因此,其中为对角元素为正的下三角矩阵。5.7.用列主元消去法解线性方程组并求出系数矩阵的行列式(即)的值。解所以解为
2、,。5.9.用追赶法解三对角方程组,其中,。解 设有分解,由公式其中,分别是系数矩阵的主对角元素及其下边和上边的次对角线元素。具体计算,可得,。由,得,;再由,得,。5.11.下述矩阵能否分解为(其中为单位下三角矩阵,为上三角矩阵)?若能分解,那么分解是否唯一?,。解 中,故不能分解。但由于,所以若交换的第1行与第3行,则可以分解且分解是唯一的。在中,故不能分解。但可以分解为,其中,为任意常数,且奇异,故分解不唯一。对于,故可以分解且分解唯一。5.13.求证:(1).;(2).。证明 (1).由定义知故。(2).由范数定义,有又所以。5.14.设且非奇异,又设为上一向量范数,定义试证明是上向量的一种范数。证明 只需证明满足向量范数的三个条件。(1).因非奇异,故对任意,有,故,当且仅当时,有。(2).对任意,有。(3).对任意,有,故是上的向量范数。5.15.设为对称正定矩阵,定义,试证明是上向量的一种范数。证明 只需证明满足向量范数的三个条件。(1).因正定对称,故当, ;而当时,。(2).对任意,有。(3).因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年福建省龙岩市新罗区苏坂中心幼儿园招聘1人考前自测高频考点模拟试题及答案详解(全优)
- 2025年南昌市劳动保障事务代理中心招聘统计监测劳务外包工作人员1人考前自测高频考点模拟试题附答案详解(黄金题型)
- 初一家长会家长代表发言稿
- 2025福建泉州市永春县部分公办学校专项招聘编制内新任教师23人(二)考前自测高频考点模拟试题完整参考答案详解
- 2025河北沧州渤海新区北方人力资源开发有限公司招聘储备派遣制人员5人模拟试卷及答案详解(网校专用)
- 2025成都银行总行金融科技岗(第三批次)招聘考前自测高频考点模拟试题含答案详解
- 2025年德阳市事业单位公开考试招聘工作人员笔试考前自测高频考点模拟试题及一套答案详解
- 2025春季国家电投广东公司校园招聘考前自测高频考点模拟试题参考答案详解
- 2025年济南市章丘区卫生健康局所属事业单位公开招聘工作人员(116人)模拟试卷及答案详解(考点梳理)
- 2025年济宁鱼台县融媒体中心公开招聘人员考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025内蒙古鄂尔多斯市国源矿业开发有限公司招聘75人备考考试题库附答案解析
- 2025年专升本政治试题真题及答案
- 幽门螺杆菌课件
- 元代文学-课件
- 糖尿病胰岛素泵的护理查房课件
- 2023新能源集控中心及智慧电厂建设方案
- 人工智能(基础版)高职人工智能基础课程PPT完整全套教学课件
- 高标准农田施工组织设计(全)
- 外科学(1)智慧树知到答案章节测试2023年温州医科大学
- 软件开发安全管理办法
- 消费者的注意
评论
0/150
提交评论