热学秦允豪第二版答案及解析_第1页
热学秦允豪第二版答案及解析_第2页
热学秦允豪第二版答案及解析_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、预测二氧化碳气体的粘滞系数, 可将它贮存于容积为 V=1.01 的烧瓶内,压强 保持为p仁1600mmHg,然后翻开活门,让二氧化碳经由长 L=10cm,直径的细管 自烧瓶流出,经过t=22分钟后,烧瓶中的压强降低至 p3=1350mmHg。试由这 些数据计算二氧化碳的粘滞系数。外界大气压p2=735mmHg,整个过程可视为在15C时发生的等温过程。设法使在平行板电容器两板间的带电油滴所受的电场力与其重力平衡。 ,那么可 以求到油滴的带电量, 这就是历史上有名的密立根油滴实验的根本原理, 由这实 验首次测定了电子电荷。 实验中油滴的密度是的, 但为求得其重力, 还应知 道它的半径r,为此,考虑

2、到不加外电场,当油滴的重力和它所受到的周围空气 的粘滞力相等时,油滴将以匀速v下降。假设空气的密度p和粘滞系数 也为已 知,试问怎样求 r?2.B.4 设想在远离地球的太空中有一宇宙飞船,飞船内有一真空实验舱。内 中有一质量为 M 的试管,它被质量为 m 的隔板分隔为体积相等的两局部。被隔 板封闭的那局部空间中有温度为T,摩尔质量为Mm,物质的量为的单原子理想 气体。隔板被放开后, 隔板无摩擦的向上移动。 在隔板离开试管顶端后气体才开 始从试管中逸出。设试管开始运动时试管静止。试求试管的最终速度。设气体、试管、隔板三者之间的热量交换可以忽略,在隔板离开试管前,气 体经历的是准静态过程。【分析】

3、由于试管外部为真空, 开始时整个系统都是静止的, 隔板被放开后 气体将膨胀, 但整个过程都是绝热的准静态过程, 我们可以利用绝热过程方程来 解这个问题。在绝热膨胀过程中,气体内能减少,温度降低。但是由于不存在重 力,气体不对整个系统以外的局部做功, 所减少的内能全部转化为隔板和试管的 动能以及气体的整体定向运动动能, 由于整个系统的总动量守恒, 所以隔板向上 运动的动量等于试管以及所装气体的向下运动的动量, 这样就可以确定隔板离开 试管时试管以及所装气体的向下运动的速度 u1,以上称为过程“ 1。当隔板离开试管以后 这称为过程 “ 2气体将陆续逸出 最终将全部逸出 试管。虽然系统仍然绝热,但是

4、它不是准静态过程,绝热过程方程不能适用。详 细分析:(1)在气体还没有逸出试管时,特别是隔板被固定时,由于气体分子的无 规那么运动, 平均来说, 分别有一半分子以平均速率撞击隔板和试管底, 因而给隔 板和试管底分别施以相等的动量。 在隔板没有固定时, 给以隔板动量使得气体做 绝热膨胀;给以试管底的动量使得试管以 u1 速度向下运动。正如上面分析的, 计算 u1 的关键是整个系统的总动量守恒。 2当隔板离开试管时,气体已经以 速度 u1 和试管一起向下运动。但是在隔板离开试管以后,气体给以试管底的动 量仍然存在,这个动量使得试管向下的运动速度又增加了u2,我们可以在以u1速度向下运动的参考系中来

5、求 u2,而在地面参考系中试管的速度应该是 u1+u2.【解】1过程“1:正如上面分析的,这是一个准静态绝热过程,设开始 时以及隔板即将离开试管时气体的温度和体积分别是T,V和Tf, Vf那么应该有如下关系:1 1TVTfVf其中国Vf=2V,丫 =5/3单原子理想气体),那么有Tf3RUCv,m T- (Y隔板、试管和气体的总的定向运动动能为气体内容减少了Yf)Ek2 2mv u1 ( M m M )2 2其中V为隔板离开试管时,隔板向上运动的速度, 速度。气体内能的减少转变为定向运动动能,所以u1是试管向下运动时的UEk另外,根据整个系统的总动量守恒,有mv(Mm M )Ui由上述各式可以

6、解得2Ui3(八)mRT2( Mm M )(m Mm M)(2)过程“2隔板离开试管以后,我们把正在向下运动的试管作为参考系。 正如上面分析的,平均来说,可以认为有一半的分子向试管底撞击, 这些分子的 数量为 N匹2分子撞击速率应该是平均速率,现在已方均根速率代替它,有3RTf:m分子其中m分子为分子的质量,Tf为隔板离开试管以后气体的温度。一个分子对试管底撞击产生2m分子V的冲量,一半分子的撞击给以试管底的总冲量为I N 2 m分子v也2m分子2m分子3MmRTf这个冲量使得试管产生动量的改变,从而得到附加速度 IU2M其中M为试管的质量。考虑到Mm NAm分子,并且利用1式,将78式代入9

7、得u2 -一 . 3M mRT23M由此得到试管的最终运动速度为:2u u1u21、3MmRT23M3(231) mRT半径a的铀球,在原子裂变过程中以体积热产生率5.5 x 103W- m-3均匀地、恒定不变地散发出热量 W-m-323(Mm M)(mMm M)H =.铀的导热系数k=46-K试问达稳态时,铀球的中心一与外外表间的温度差是多少?【分析】对于球体内部有恒定不变地均匀散发出热量的传热问题,它到达稳态的条件是;单位时间内,从半径为叶dr :的球壳向外传递的热量,应该等于 单位时间内以r为半径的球内所产生的总的热量。 假设前者小于后者,铀球内部 温度会升高,稳态尚末到达;假设后者小于

8、前者,铀球内部温度会降低,稳态仍 然未到达.解:现在以半径为rdr的球壳为研究对象,设 r及rdr处的温度分别为 T(r),T(r) dT。由于球壳内、外外表之间存在温度梯度,有热量从球壳向外传输,球壳 通过的热量dQdT 八dT , 2A4 ndtdzdr到达稳态时球壳在单位时间内透过的热流应该等于以r为半径的铀球在单位时间内产.口.冋dT 2 4 n drH3生的热量假设前者小于后者,铀球内部温度会升高,稳态尚未到达H 4 n33aHrdr0 rdr3,所以Ta dTTTaTo扣2 0)0.20 K6两个同样大小经过黑化的小球, 一正在熔化的冰块的大空洞里,发现铝的温度从 经同样的温度变化

9、那么用了。问铝和铜的比热容之比是多少?铝和铜的密度分别为2.7 x 10103kg?3 和8.9 X103kg?3 .一个是铜的,用丝线把它们吊在一个是铝的3C降到1C用了 10mi n,而铜球【解】1物体外表总辐射照度E,来自空腔的总辐射出射度 ME M 1BTw;物体净能量流密度为T4tW t4dQ mCpdTCpdT Cp为热容量4物体单位时间、单位外表上吸收的辐射能量为: 发射的能量为:MdQdTJtA (3)atW4 t4atwT Tw T4 ATw Tw TCpdT(4)4 AT击 Tw T dtdtCpT2 dT4A TJ T1 Tw TCp 4A T誌In2依题意:把5式中,C

10、p C c为比热1C7InAw 2.7103wRt?10R6TWT1IntW4WT2R 4A1uW8.9 103W铜:CuRtu14.2R10RC a/2.7103W108.92.32Cu14.2R14.22.77十88.9 10 W铝:4ATta7气体的平均自由程可通过实验测定(例如由测量气体的粘度算出气体的平均自 由程).现在测得t=2 0C,压强为1.0105Pa时氩和氮的平均自由程分别为A 9.9108m N 27.510 8m.试问:(l)氮和氩的有效直径之比是多少?2t=-20C, 2.0105Pa时的-是多少?3t=-40C, 1.0105Pa 时的是多少?解 pnkT在压强和混

11、度相同时有如下关系:a2 dNndN 2n2d;ndA那么有12 8 2dNA 29.910 83dA匚27.510 85在温度都是t=20C情况下, kTA=2 p氩氛的平均自由程和压强成反比,也就是说9_1.0105m 5.010 7m2.0104P(3)同样对于压强相同而温度不同的氮气,其平均自由程和温度成正比827.510 “a233m2932.210 7m因为nmv CV,mMmnmvT,所以nmv q,mMmM,那么有3D因为nmv3nm所以MV,所以那么有4由1式可以得到RTM23 1Na1.021 210 m23 2 Na2.821 210 m标准状态下氦气的粘度为1,氩气的粘

12、度为2,他们的摩尔质量分别为Ml和M2.。试冋:1氦原子和氦原子碰撞的碰撞截面1和氩原子与氩原子的碰撞截面2之比等于多少? 2氦的导热系数1与氩的导热系数2之比等于多少? 3此时测得氦气的粘度氦的扩散系数Di与氩的扩散系数D2之比等于多少? 411.87 10 3N s m 2和氩气的粘度232.11 10 N s2。用这些数据近似的估算碰撞截面【解】1因为 nmv31 -2 n,V8kT那么有mmv 23.23km *在温度相同情况下,原子和氦原子碰撞的碰撞截面1和氩原子与氩原子的碰撞截面2之比为M1M221(2)因为nmv3CV,mnmv3所以CV ,m那么有M2M1(3)应为nmv3mn

13、所以Dm2M1(4)由1可以得到3 1Na1.0 10 21 m2RTM222Na2.8 10 21 m2假设旋转粘度计(如图3-1左图所示)中的A的半径为R2,它和B的半径1之差 为S令(R2-R1M)而S与R1相比不是很小.试问当扭丝扭转力矩为G,圆筒旋 转速度为3时所测得的流体的粘度是多少?【分析】 注意R2-R1=S与R1相比不是很小,在两圆筒之间沿半径方向的速度 梯度不能认为是处处相同的怎样应用牛顿枯性定律解此题?设当圆筒旋转速度为 3时,夹层内气体的运动已经到达稳态,夹层内气体 受到的合力矩应该为零现在在待测气体中隔离出一层其中心轴与圆筒中心轴相 同,其内径为R,厚度为dR,长度为

14、L的薄圆筒,如图3-1右图所示.当圆筒以 角速度3匀速转动时,这一层薄圆筒状气体也必做匀速转动.由于这层气体对圆筒中心轴的角动量是守恒的,于是根据角动量守恒定理可以知道这层气体所受到 的相对于圆筒中心轴的合外力矩等于零.因此应该对这一层气体所受到的力矩进 行分析.【解】作用于夹层中RR+dR这层气体的外力有:内、外外表所受的压力,它 们对轴的力矩均为零;内外表所受的粘性力F,它对轴作用的力矩为-FR其中“- 号表示其方向与圆筒转动方向相反:外外表所受的粘性力为F十dF,它对轴的力 矩为+(F+dF)x (R+dR), “+号表示其方向是与圆筒转动方向一致的。由角动量 守恒定理得(F+dF)(R

15、+dR)-FR=0那么有d(FR)=0(1)(这里忽略了二级无穷小项)根据牛顿粘性定律得Fdu dR2 RL2(2)式代人(1)式得d 2u小d u小R2 2 0 dR2dR人dudu令u,得R2u 0dRu 积分得uC1R2Cidu dR2dR2 R-再积分得到其中Ci,C2为积分常数.由边界条件:在R=Ri处,u=0;R=R2处,u= 3 R2 可以得到c1C20,RiCiR24C2RCiRiR;5R2%R2R2 R将5)中的两个式了代人到(3式,就得到待测气体中气体流速随半径变化的规 律为1 rR2u R2R RR2R6(2)式中只有R是变星).即可求得薄圆筒所受到将(6)式代入式应该注

16、意到, 的粘性力对中心轴的力矩为2 L R12 dU7x dRR2 R1由此解得被测气体的粘性系数等于R2%2 LRRf3.B.2 个均匀的非金属环形圆柱,它的内、外半径分别为ri,r2其长度为1(1, 如图3-2所示.它的内、外外表分别保持Ti和T2温度不变,试求它到达稳态时的 内部温度分布【解】由于l r2,在忽略上、下外表和外界之间的热传递的情况下,在离开 环形圆柱中心轴r处的温度是处处相等的(因为材料是均匀的),设其导热系数为,考虑从r到叶dr那一壳层空间,它的温度从T变到T+dT对这一壳层应用傅 里叶定律dQdTdTdr2 rl1到达稳态时上式应该是一个常量,设它等于C,那么dT2

17、rldrAdrr两边积分,得到T( r )Al nr B2将边界条件:当r=ri时,T(ri)=Ti时;当r=r2时,T(r2)=T2一起分别代入2式, 得到TjA In r1B,T2Aln r2B联立(3)式中的两个式子,解得3T2TiIn ri百 In r2T2 In riIn2ri将(4)式中的两个式子代入到2)式,可以解得在非金属环形圆柱中半径r处的温 度为T(r)In ri In r2(T,T2)ln rT? In r2T, In 片如图3-5所示,利用一直径为,焦距为f=0.5的凸透镜B在一粗糙的黑色薄圆盘 A上形成一个太阳C的聚焦像,像的大小与薄圆盘正好一样大.假定太阳的黑体温

18、度是T日=6000K,太阳中心与地球中心间距离为x i0iim,太阳半径为a=i.4x i09m 试问盘可能到达的最高温度是多少?【分析】这是一个辐射传热和几何光学相结合的复合题一所有射到凸透镜上的 太阳光线都聚焦到薄圆盘上,薄圆盘是一个黑体,所以射到凸透镜上的太阳光线 的能量能全部被薄圆盘吸收、薄圆盘又向外发射热辐射能,到达稳定状态时,其 能量的收和支相等,温度不再上升。【解】按照斯忒藩一玻耳兹曼定律,太阳作为黑体,它在单位时间内在单位面积的外表上向外发射的热辐射能为叫tB4门其中,c为斯忒藩一玻耳兹曼常量.太阳外表在单位时间内向外发射的总的热辐 射能为PB 4 R| TB4 2显然,在以太

19、阳中心为球心,以 a即太阳中心与地球中心间的距离为平径的球 面上甲也有和2式相等的热功率透过如果不考虑地球的大气层对太阳光的吸收 那么根据比例关系就知道凸透镜所接收到的太阳能的热功率为d2d2其中4为凸透镜的面积,34 a2是以太阳的中心为圆心,太阳中心与地球中心间距离为半径的球面面积。这一热功率通过凸透镜聚焦到薄圆盘上并且全部被薄圆盘吸攻因为薄圆盘是黑体,其吸收系数等于1.同时薄圆盘也向外发射热辐射一按照斯忒藩一玻耳 兹曼定律,它向外发射的热辐射功率为P2 r2 T4其中T为薄圆盘的温度,r是薄圆盘的半径.而因子2是因为薄圆盘有正、反两个 面而乘上的.到达稳定状态时3式应该和4式相等。至于薄

20、圆盘的半径要通过几何光学的成像关系来得到,从图3-5可以看到Rba由2式、5式。以及3式等于式.可以得到薄圆盘的温度为1595K这个温度是最高的,因为它不考虑大气层对太阳能的吸收 平均说米大气层对太 阳能的吸收率为25%,也不考虑薄圆盘的对流传热等热损失,某空调器是由采用可逆卡诺循环的制冷机所制成。它工作于某房间设其温度为T2及室外设其温度为Tl之间,消耗的功率为 P,试问:1假设在1秒内它从房间吸取热量 Q,向室外放热 Ql,那么Q2是多大?以Tl,T2 表示之。2假设室外向房间的漏热遵从牛顿冷却定律,即dQ/dtDTl T2,其中D是与房屋的结构有关的常数。试问制冷机长期连续运转后,房间所

21、能到达的最低温度 T2是多大?以Tl、P、D表示之。3假设室外温度为 30 C,温度控制器开关使其间 断运转30 %的时间例如开了 3分钟就停 7分钟,如此交替开停,发现这时室内保持 20 C温度不变。试问在夏天仍要求维持室内温度20 C,那么该空调器可允许正常运转的最高室外温度是多少? 4在冬天,致冷机从外界吸热,向室内放热,制冷机起了热泵的作 用,仍要求维持室内为 20 C,那么它能正常运转的最低室外温度是多少?分析:这是现在正在广泛使用的热泵,它既能在夏天用来降温,又能在冬天用来取 暖的一个理想模型认为制冷机是可逆卡诺制冷机。通常制冷机是采用交替开停的方法来控制温度,使房间到达根本恒温的

22、。在到达稳定状态时, 在相同时间内,冬天时制冷机向房间传递的热量应该等于房间向外的漏热;夏天时外界向房间的漏热应该等于制冷机从房间取出的热量。解:1对于可逆卡诺制冷机,有:Q1 /(Q1 Q2 )/飞T2经过变换可以得到Q2 /(Q1 Q2)T2/(T1T2)1又由于Q1 Q2W,而?P ? dW/dtdQ2 / dt Q2考虑到在运行稳定时Q2/WQ2/ P ,因而1式可表示为Q2/P T2 /Tl T2,Q2 T2P/Ti T222当制冷机长期连续运转后,房间到达的最低温度 T2时制冷机的制冷功率应该等于 房间的漏热功率。制冷机的制冷功率是由制冷机的效率公式决定的。房间的漏热功率是由牛顿冷

23、却定律决定的,因而利用1式,有DTi T2 T2P/G1 T2 3DT1 T22 T2P 0即:DT; 2DT1 PT2 DT120因为T2 T1,所以上式中只能取负号,所以有4哺)T2TiP 1 P 2 (二(P)2 2D 2、Dd43当室外温度为30 C,制冷机长期运转30 %时间并且到达稳态时,这时的房间 0温度为T2 20 C。我们可以利用这一条件求出D。因为在到达稳定状态时,单位时间内外界向房间的漏热(dQ/dt)D(T1 T2)应该等于制冷机从房间取出的热量,而后者可以用2式来求出,不过其中的P应该用.3P来代替。这样,就有D(T1 T2 )0.3P T2/(TT2)5将T130

24、c,T220 c代入5式,可以得到D 2.93 0.3 P6到了夏天仍要求维持室内温度 20 C,假设该空调器可允许正常运转的最高室外温度 0设为Ti,而室内温度仍为 T2 20 C。这时到达稳态的条件同样是:制冷机的制冷功 率应该等于房间的漏热功率。但是现在空调器是不间歇地连续运转,在5式中的P应改为3 P,即/III得到T2)P T2 /(TiT2 )64在冬天要求维持室内温度T1那么参考6式,有311.26 K 38.11 c20 C,设它能正常运转的最低室外温度为D(TiT2 )P T2 /(TiT2 )8将5中的D 2.93 0.3P代入,可以得到T;274.74 K 1.59 c有

25、三个热容都是 C(C为常量夕的相同物体 A,B,D 其温度分 TA=TB=300K,TD=100K .假设外界不做功也不供给热量.利用热机将这三个物体 作为热触,使二个物体中的某一温度升高,试向它所能到达的最高温度是多少?这时其他两物体的温度分别是多少?【分析】 初看起来,要求出所能到达的最高温度,是不是要利用仁诺定理 以及可逆卡诺热机效率公式来解此题了当然, 要使得共中某物休的IJ到达最高, 必须利用可逆卜诺热机.但是注意到,此题中利用可逆卡诺热机以后,不仅效率 最高,而且物体A,B,D和卡诺热机所组成的系统是绝热的,而可逆的绝热过 程其总熵是不变的,所以我们可以利用熵增加原理来解此题,其解

26、题方法比拟简, 并且具有普遍意义.【解】设温度改变后三物体的最后温度分别为。一因为外界不做功也不供热,所以系统的内能不变,在不考虑物体由于温度变化而发生体积改变的情况 下,内能改变只和吸收或者释放热量有关,所以QTa Ta) C(Tb TB) C(Td TD)0可得Ta Tb TdTa Tb Td700KStTb dTS C0TaTbTTd T1ln 1ln TB1ln ID0有TaTbTd可得1 1 1TaTbTdTaTbTd9106K2又因为该过程属于可逆过程。故绝热.系统伏态改交前后的总熵不变.即假设A物体升到最高温度,那么B,D温度将相等且低于A的温度,即IIITbTdTa联立(I)式、(2)式、3式,解得tbTd150K,Ta400K也可能出现如下的解:(1)III(1)出现并立的两个最高温度(TbTdTa)TbTd150K,Ta400K其最高温度低于(4)中的数值而被舍去。(2)出现负的温度数值,也被舍去.所似能够到达温度最高的物体的温度是 400K 如图6-5所示,一块高为a,宽为b的长方形钢板放在边长为c的立方体 的冰块上,钢板两侧分别各挂上一质量为 m的重物。整个系统及周边环境均在0C 温度以下。1证明钢板下面冰的温度降低了。2在钢板下面的冰熔解,在板上面的水又凝结,热量从钢板往下传,假设在 单位时间内从单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论