光伏组件用接线盒_第1页
光伏组件用接线盒_第2页
光伏组件用接线盒_第3页
光伏组件用接线盒_第4页
光伏组件用接线盒_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.1 接线盒接线盒是集电气设计、机械设计与材料科学相结合的跨领域的综合性设计;接线盒充当"保镖"时,它利用二极管自身的性能使得太阳电池组件在遮光、电流失配等其他不利因素发生时,还能保持其能工作,适当降低损失。接线盒的作用一是增强组件的安全性能,二密封组件电流输出部分(引线部分)三使组件使用更便捷、可靠。一般接线盒由盒盖、盒体、接线端子、二极管、连接线、连接器几大部分组成。外壳要具有强烈的抗老化、耐紫外线能力; 符合室外恶劣环境条件下的使用要求;自锁功能使连接方式更加便捷、牢固;必须应有防水密封设计、科学的防触电绝缘保护,具有更好的安全性能;接线端子安装要牢固,与汇流带有良

2、好的焊接性。二极管分为:旁路二极管和防反冲二极管。二极管的主要功能是单向导通功能。旁路二极管主要作用是防止组件的热斑效应。在太阳能电池板正常工作时旁路二极管不会起到作用,但当遇到热斑效应时,旁路二极管会自动越过该串电池串并与其它电池串相连继续工作。现在我们所使用的旁路二极管主要的作用也就是防止电池片烧掉。防反冲二极管主要作用是组件在没有光照时防止蓄电池电流倒流。连接器、连接线要具有良好的绝缘性能,公母插头带有自锁功能是太阳能电池板与电气连接更便捷可靠。1.1.1 接线盒的基本应用  目前市场上主流接线盒品种较多,样式各异,按照与汇流条的连接方式可分为卡接式与焊接式;二者除了

3、与汇流条的连接方式不同外,其结构基本是一致的。常规型的接线盒基本由以下几部分构成:底座、导电块、二极管、卡接口/焊接点、密封圈、盒盖、后罩及配件、连接器、电缆线等,如图1所示: 一个简单的接线盒所需要的材料就达十多种,原材料的性能及使用寿命关乎着接线盒本身的质量,所以接线盒的材料一直受到厂商及组件厂使用者的倍加关注,表1简单的例举了接线盒原材料的材质: 接线盒在太阳能电池组件中的作用简单的来讲可以概括为两点:a)连接和传输功能,b)保护组件;它是一门集电气设计、机械设计和材料科学相结合的跨领域的综合性设计。太阳能电池组件是通过太阳能电池进行光电转换的,而单个组件发出的电想传

4、输到充电、控制系统中去,必须要通过接线盒进行传输;而且接线盒还是整个太阳能方阵的"纽带",将许多组件串联在一起形成一个发电的整体,所以接线盒在太阳能应用中的作用是不容忽视的。接线盒还有一个更重要的作用就是保护组件;当阵列中的组件受到乌云、树枝、鸟粪等其它遮挡物而发生热斑时,旁路在组件中的二极管,利用自身的单向导电性能,将问题电池、电池串旁路掉,保护整个组件乃至整个阵列,确保能使其保持在必要的工作状态,减少不必要的损失。最理想的组件应是每片电池都应旁路一个二极管,这样才能保证组件的绝对安全,但是出于成本以及工艺角度,目前为止大家采用是一串电池旁路一个二极管,这样做是一种简单有

5、效的办法。1.1.2 接线盒的性能3.1接线盒性能要求及选型由于接线盒对于组件的重要性,选择一个合适的接线盒显得尤为重要;对于一个优秀的太阳能电池组件用接线盒必须要具备以下几点性能要求:a)满足于室外恶劣环境条件下的使用要求;b)外壳有强烈的抗老化、耐紫外线能力;c)优秀的散热模式和合理的内腔容积来有效降低内部温度,以满足电气安全要求;d)良好的防水、防尘保护为用户提供安全的连接方案;e)较低的体电阻,以尽可能的减小接线盒带来的功率损耗;具体的使用要求或指标简单的概括如下所示,表2列出了部分接线盒的性能指标,图2是接线盒测试部件拉力示意图: 1.1.3 接线盒的选用市场上的接线盒如果

6、想被组件厂商接受的话就必须通过TUV、UL等其他国际知名认证机构的认证,这些认证机构针对接线盒会有一系列的检查、测试方法,以确保其满足客户的使用要求。组件厂在使用选择接线盒时,除了要求接线盒已取得TUV、UL等认证外,还必须关注以下方面,才能确保自己找到合适的接线盒:第一,二极管额定电流结温测试(旁路二极管热性能试验);由于太阳能电池采用低电压高电流的模式,对于接线盒中旁路二极管的额定电流就显得尤为重要;据不完全统计,接线盒在认证测试时仅此一项试验失败的就高达40%,在组件户外应用中,出现接线盒烧毁的现象也屡见不鲜。目前要求二极管的结温不能超过200,但是不同二极管之间是有差异的,如果二极管的

7、节温过高,不但会导致二极管的本身的损坏和使用寿命的降低,而且会给组件带来负面影响,比如EVA脱层、EVA及背板加速老化等其它不良状况,甚至会引起组件烧毁现象。所以大家在选择接线盒时额定电流尽可能的大,结温测试温度越低越好。第二,接线盒体电阻;接线盒由各种金属、塑料组成,本身会有一定的电阻,外加到组件中去无疑会增加组件的功率损耗,这一会给组件额外增加一部分不必要的功率损失,所以这部分电阻需要越小越好。 接线盒性能测量接线盒在认证时会经过一系列的安全、性能测试,包括IP测试、拉力测试、旁路二极管热性能试验、湿漏电试验、环境试验等其他实验项目,各标准、认证机构有着非常详细的要求规定,本文不

8、一一叙述,这里着重讨论一下旁路二极管热性能试验与接线盒体电阻的测试方法。 旁路二极管热性能试验按照IEC6121510.18.3的要求进行测试试验,以下是测试某一组件旁路二极管热性能试验过程:先测试该组件的电性能,确定Isc为5.53A,并测试二极管的管压降;前期工作准备完毕后,将组件放入温度为75±5的腔室内进行加温,并同时通以等于标准测试条件下短路电流±2%的电流;1小时后测试每个二极管的表面温度,再利用下列方程计算二极管的测试最大结温: 二极管结温测试后,再增加通以组件电流到标准测试条件下短路电流1.25倍,同时保持组件的温度在75±5,

9、保持通过组件电流1h,验证二极管仍能工作,表3是测试过程部分数据记录:  此块组件的二极管结温测试结果是比较理想的,且通完1.25倍的标准测试条件下短路电流1小时后,二极管仍能继续工作。制作组件时层压温度一般设定为150左右,如果二极管结温测试超过170,那可就要当心了,若再加上接线盒的散热性能不好,后果那是相当严重的,比如会造成组件材料的封装退化、加速老化等其他不良现象,组件可能会较早或加速失效,虽然它并没有超过200。为了避免或减低组件在户外使用的时候出现接线盒烧毁、组件烧灼的现象(如图3所示),就必须要关注此项测试,结温测试结果要尽可能的低。  接线盒体电阻

10、测试如图4所示,我们模拟组件中的连接方式,将2根同规格汇流条分别插接在接线盒两边的卡接口,并将公母头短接,用低电阻测试仪测试汇流条两端电阻。接线盒的实际电阻,为测试电阻减去2根汇流条电阻的差值。这个电阻主要与3部分有关:接触电阻、线阻及内部金属电阻; 一般接线盒的体电阻在13m,根据P=I2R进行估算,13m的电阻会给组件带来近1W的功率损失,但是每个接线盒的体电阻是不一样的,我们又进行了以下试验:选用3个厂商的接线盒进行对比测试,测试3种接线盒的体电阻后,分别连接在同一块组件层压件上进行电性能测试,表4是测试结果,组件层压件的测试功率为248.52W,结果显示体电阻小的接线盒封装组

11、件后,功率损失小,反之则大:  以上实验可以看出,接线盒的体电阻对组件封装损失的影响;如果接线盒体电阻测试值较大的话,虽然其本身的其他性能良好,但是高体电阻的接线盒给组件带来的负面影响是显而易见的,所以我们在选择接线盒时在保证其他性能的前提下,它的体电阻应越小越好。1.1.4 接线盒的未来发展方向由于接线盒对太阳能电池组件的重要性,以及随着整个光伏市场以及广大客户的应用,目前各大接线盒厂商也在朝着高质量的接线盒的方向努力,比如设计出高额定电流、高防水性、优良的散热性、低体电阻等等的接线盒,这些随着技术发展必将会在今后的接线盒产品中出现。另一方面,传统的太阳能组件随着年月而退

12、化(一般来说组件的性能会以每年0.5%至1.0%的速度逐渐退化),导致这个现象的原因可能包括光伏组件之间的失配、旁路二极管的热能耗散令组件性能加速退化、以及各种的环境因素如浮云、污垢及碎片等等;大大降低了单个组件以及整个系统的发电量,人们为了解决或尽可能减小这个问题,在接线盒内部进行改造,并对改造后的接接线盒称为"SmartBox",而应用这种接线盒的组件则称之为"SmartModule"。而"SmartBox"通常利用的技术有MOS集成电路基础的智能光伏组件、旁路电路集成无线发射接收数据系统、MPPT+DCtoDC/DCtoAC转换

13、方式等其他新技术。4.1MOS集成电路基础的智能光伏组件此组件使用MOS集成电路代替传统二极管,降低组件被遮挡时二极管的发热能耗,同时减少组件正常工作时晶体管的反向漏电流,提高组件的发电效率;由于二极管的特性,当大电流流过时会在上面产生1V左右的电压降。由W=V*I得知,当有10A的电流流过时就会有10W左右的功率损失,长时间的积累使二极管的温度逐渐升高,且二极管没有散热装置,二极管就会发烫,甚至烧坏极管,烧毁接线盒;而MOS管与普通的二极管比较,其导通电阻只有510m,且其自带散热片,散热性能较好等优点,图5是QCSOLAR公司生产的MOS电路接线盒。  4.2旁路电路集

14、成无线发射接收数据系统此系统中接线盒内集成了无线收发装置,可以实时监控并传输数据,譬如组件的电流、电压、功率等,其工作原理是组件在工作时,利用接线盒内的单片机,通过检测两串太阳电池的端电压来判断太阳电池是否处于正常工作状态,一旦检测到两处电压不一样,就认为低电压的一串电池出现了热斑效应,两串电池的输出电流就有差别,此时单片机通过控制MOS管的栅极电压来控制MOS管的导通状态,来把其中一串电池多产生的电流旁路掉,使组件正常工作,实现了MOS管的旁路作用。单片机在监控光伏组件工作,控制MOS管的同时,把每一时刻的电压、电流信息采集下来,经过其内部运算累加,得到整个组件的发电量,并在需要时可传输相关

15、数据信息。4.3MPPT+DCtoDC/DCtoAC转换方式接线盒加装此种装置后,通过对阵列中每块电池板分布式安装最大功率跟踪模块,使电站方阵中每块板始终工作在最大功率输出点。目前市场上出现的产品都是基于美国国家半导体研制的SolarMagic技术之上设计开发出的;当阵列中的组件被建筑、云、树等阴影遮挡、自身出现失配情况时,由于二极管的作用部分电池会被旁路掉,从而减低了整个组件阵列的发电总量;利用NS的SolarMagic技术能够以太阳能电池组件为单位进行控制,使其在MPP状态下工作,在以上情况发生时与之前比较最多可提高45%的发电量;图6是NS开发的SolarMagic智能太阳能光伏组件接线

16、盒,以及摘自Photon杂志的一组利用这一技术性能数据:  虽然这类技术优势明显,但是高额的成本很大程度上限制了它的广泛应用,相信随着科学技术的发展,人们一定会找到合适的办法去生产出价廉物美的接线盒。1.1.5 电缆接线盒目前采用的电缆规格有三种2.5、  4、  6mm2,但是从目前的组件设计上看,组件最大的短路电流没有超过10A的,光伏电缆的要求很高,导体的铜含量很高,即使2.5mm2的电缆载流量也不会低于15A,4mm2的电缆应该不会低于25A,而且如果这么大的电流通过的话,应该可以保证电缆不会发热。再就是,电池组件采用的是串联

17、方式连接,汇流带承载的电流应该和电缆上的电流是一样的,汇流带按照目前的最大的组件设计的截面计算7.5*0.2=1.5mm2,电缆的截面积远远大于汇流带的截面积,因此,个人认为目前晶体硅组件的接线盒完全可以采用2.5mm2的电缆,一方面可以降低成本,另一方面可以节约自然资源的消耗,铜的资源本身也并不是很丰富,既然是绿色资源产业,同仁们应该考虑各方面对资源的消耗,从电流方面说,一般的组件用2.5MM2的是够了,节省了很多成本,节约资源。但现在一般晶体硅组件用的都是4.0MM2的电缆,功率再大点的,可能要用到6.0MM2的。2.5MM2只有薄膜组件用的比较多。这个可能考虑到电池板使用寿命长,系统稳定

18、性要求高,使用环境恶劣等原因,所以采用规格更大的电缆吧。另外,行业里也约定熟成了,渐渐的也成了一种标准。1.1.6 二极管在太阳电池方阵中,二极管是很重要的元器件,常用的二极管有防反充(阻塞)二极管和旁路二极管。在储能蓄电池或逆变器与太阳电池方阵之间,要串联一个阻塞二极管,以防止夜间或阴雨天太阳电池方阵工作电压低于其供电的直流母线电压时,蓄电池反过来向太阳电池方阵倒送电,既而消耗能量和导致方阵发热。它串联在太阳电池方阵的电路中,起单向导通的作用。在有较多太阳电池组件串联或太阳电池方阵时,需要在每个太阳电池组件两端并联一个二极管,挡其中某个组件被阴影遮挡或出现故障而停止发电时,在二极管两端可以形

19、成正向偏压,实现电流的旁路,不至于影响其他正常组件的发电,同时也保护太阳电池组件避免受到较高的正向偏压或由于“热斑效应”发热而损坏。这类并联在组件两端的二极管成为旁路二极管。光伏方阵中通常使用的是硅整流型二极管,在选用型号时应注意其容量应留有一定余量,以防止击穿损坏。通常其耐压容量应能达到最大反向工作电压的两倍,电流容量也要达到预期最大运行电流的两倍。由于阻塞二极管存在导通管压降,串联在电路中运行时要消耗一定的功率。一般使用的硅整流二极管管压降为0.6-0.8V,大容量硅整流二极管的管压降可达1-2V,若用肖特基二极管,管压降可降低为0.2-0.3V,但肖特基二极管的耐压和电流容量相对较小,选

20、用时要加以注意。有些控制器具有防反接功能,这时也可以不接阻塞二极管,如果所有的组件都是并联的就可不连接旁路二极管,实际应用时,由于设置旁路二极管要增加成本和损耗,对于组件串联数目不多并且现场工作条件比较好的场合,也可不用旁路二极管。5.9.6.1二极管的工作原理晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场

21、和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。5.9.6.2二极管的类型二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地

22、烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。5.9.6.3二极管的导电特性二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。正向特性:在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,

23、这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。反向特性:在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向

24、电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。5.9.6.4二极管的主要参数用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:1、额定正向工作电流是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN40014007型锗二极管的额定正向工作电流为1A。2、最高反向工作电压加在二极管两端的反向电压高到一定

25、值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。3、反向电流反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25时反向电流仅

26、为5uA,温度升高到75时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。5.9.6.5测试二极管的好坏 初学者在业余条件下可以使用万用表测试二极管性能的好坏。测试前先把万用表的转换开关拨到欧姆档的RX1K档位(注意不要使用RX1档,以免电流过大烧坏二极管),再将红、黑两根表笔短路,进行欧姆调零。1、正向特性测试把万用表的黑表笔(表内正极)搭触二极管的正极,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。2、反向特性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论