求解共点力平衡问题的常见方法(经典归纳附详细答案)_第1页
求解共点力平衡问题的常见方法(经典归纳附详细答案)_第2页
求解共点力平衡问题的常见方法(经典归纳附详细答案)_第3页
求解共点力平衡问题的常见方法(经典归纳附详细答案)_第4页
求解共点力平衡问题的常见方法(经典归纳附详细答案)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、求解共点力平衡问题的常见方法共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、 物理知识和能力的应用,是高考中的热点。对于刚入学的高一新生来说,这个部分是一大难点。 一、力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三 个力大小相等,方向相反 ;1. (2008年 ·广东卷如图所示,质量为 m 的物体悬挂在轻质支架上,斜梁 OB 与竖直方向的夹角 为 (A、 B 点可以自由转动 。 设水平横梁 OA 和斜梁 OB 作用于 O 点的弹力分别为 F 1和 F 2, 以下 结果正确的是( A.F 1=mgsin B.F 1= si

2、n mg q C.F 2=mgcos D.F 2=cos mg q二、力的分解法 在实际问题中,一般根据力产生的实际作用效果分解。 2、如图所示,在倾角为 的斜面上,放一质量为 m 的光滑小球,球被竖直的木板挡住,则球对 挡板的压力和球对斜面的压力分别是多少? 3.如图所示,质量为 m 的球放在倾角为 的光滑斜面上,试分析挡板 AO 与斜面间的倾角 多 大时, AO 所受压力最小。三、正交分解法 解多个共点力作用下物体平衡问题的方法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解 : 0x F =合 , 0y F =合 .为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则.

3、 4、 如图所示, 重力为 500N 的人通过跨过定滑轮的轻绳牵引重 200N 的物体, 当绳与水平面成 60°角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形 的三条边,利用力的三角形与空间的三角形的相似规律求解 . 5、 固定在水平面上的光滑半球半径为 R ,球心 0的正上方 C 处固定一个 小定滑轮,细线一端拴一小球置于半球面上 A 点,另一端绕过定滑轮,如 图 5所示,现将小球缓慢地从 A 点拉向 B 点,则此过程中小球对半球的压 力大小 N F 、细线的拉力大小 T F 的变化

4、情况是 ( A 、 N F 不变、 T F 不变 B. N F 不变、 T F 变大 C , N F 不变、 T F 变小 D. N F 变大、 T F 变小 6、两根长度相等的轻绳下端悬挂一质量为 m 物体,上端分别固定在 天花板 M 、 N 两点, M 、 N 之间距离为 S ,如图所示。已知两绳所能 承受的最大拉力均为 T ,则每根绳长度不得短于 _ 。五、用图解法处理动态平衡问题对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角 形,进而处理物体平衡问题的方法叫三角形法 ; 力三角形法在处理动态平衡问题时方便、直观, 容易判断 . 7、如图 4甲,细绳 AO

5、 、 BO 等长且共同悬一物, A 点固定不动,在手持 B 点沿圆弧向 C 点缓慢移 动过程中,绳 BO 的张力将 ( A 、不断变大 B、不断变小 C 、先变大再变小 D、先变小再变大 六.矢量三角形在力的静态平衡问题中的应用若物体受到三个力(不只三个力时可以先合成三个力的作用而处于平衡状态,则这三个力 一定能构成一个力的矢量三角形。三角形三边的长度对应三个力的大小,夹角确定各力的方向。 8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为 G ,斜面的倾角为 ,求下列情况 下小球对斜面和挡板的压力?(1 、挡板竖直放置(2 、挡板与斜面垂直七、对称法 研究对象所受力若具有对称性,则求解

6、时可把较复杂的运算转化为较简单的运算,或者将复 杂的图形转化为直观而简单的图形 . 所以在分析问题时,首先应明确物体受力是否具有对称性 . 9、如图 10甲所示,重为 G 的均匀链条挂在等高的两钩上,链条悬挂处与水平方向成 角,试求 ; (1链条两端的张力大小 . (2链条最低处的张力大小 .八、整体法与隔离法通常在分析外力对系统的作用时, 用整体法; 在分析系统内各物体 (各部分 间相互作用时, 用隔离法.解题中应遵循 “ 先整体、后隔离 ” 的原则。 10、有一直角支架 AOB , AO 水平放置,表面粗糙, OB 竖直向下,表面光滑, AO 上套有小环 P , OB 上套有小环 Q ,两

7、环质量均为 m ,两环间由一根质量可忽略,不何伸长的细绳相连,并在某一位置 平衡,如图所示,现将 P 环向左移一小段距离,两环再将达到平衡,那 么将移动后的平衡状态和原来的平衡状态比较, AO 杆对 P 环的支持力 N F 和细绳拉力 T F 的变化情况是:( A 、 N F 不变、 T F 变大 B 、 N F 不变、 T F 变小 C 、 N F 变大、 T F 变大D 、 N F 变大、 T F 变小11、 在粗糙水平面上有一个三角形木块 a , 在它的两个粗糙斜面上分别放有质量为 m 1和 m 2的两个木块 b 和 c ,如图所示,已知 m 1>m 2,三木块均处于静止,则粗糙地

8、面 对于三角形木块( A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用九、正弦定理法 正弦定理 :在同一个三角形中,三角形的边长与所对角 的正弦比值相等 ; 在中有 sin sin sin AB BC CA CAB=同样,在力的三角形中也满足上述关系,即力的大小与所对角的正弦比值相等 . 12、不可伸长的轻细绳 AO 、 BO 的结点为 0,在 0点悬吊电灯 L , OA 绳处于水平,电 灯 L 静止 , 如图所示,保持 0点位置不变, 改变 OA 的长度使 A 点逐渐上升至 C 点, 在 此过

9、程中绳 OA 的拉力大小如何变化 ?十.拉密原理法 拉密原理 :如果在三个共点力作用下物体处于平衡状态, 那么各力的大小分 别与另外两个力所夹角的正弦成正比 . 在图 8所示情况下,原理表达式为 312123sin sin sin F F F =13、 如图 9甲所示装置, 两根细绳拉住一个小球, 保持两绳之间夹角 不变 ; 若把整个装置顺时针缓慢转动 0 90,则在转动过程中, CA 绳拉力 1T F 大小的 变化情况是 , CB 绳拉力 2T F 大小的变化情况是十一 . 解析法:求共点力作用下物体平衡的极值问题的方法根据物体的平衡条件列方程,在解方程时采用数学知识求极值。通常我们会用到的

10、数学知 识有:二次函数极值、均分定理求极值、讨论分式极值、三角函数极值以及几何法求极值 14、重为 G 的木块与水平地面间的动摩擦因数为 ,一人欲用最小的力 F 使得木块做匀速运动, 则此最小作用力的大小和方向如何? N 第三章 相互作用专题练习(一 参考答案求解共点力平衡问题的常见方法1. 【解析】根据三力平衡特点,任意两个力的合力与第三个力等大反向,可作出如图所示矢量图, 由三角形知识可得 F 1=mgtan,F2=mg/cos,故 D 正确 ,A 、 B 、 C 错误。2. 【解析】小球受到重力 mg 、斜面的支持力 N 1、竖直木板的支持力 N 2的作用 . 将重力 mg 沿 N 1、

11、N 2反方向进行分解,分解为 N 1, 、 N 2,如图所示 . 由平衡条件得:N 1= N1,=mg/cos N 2= N2,=mgtan.3. 【解析】当挡板与斜面的夹角 由图示位置变化时, F N1大小改变,但方向不变,始终与斜面 垂直; F N2的大小、方向均改变(图中画出一系列虚线表示变化的 F N2 。由图可看出,当 F N2与 F N1垂直即 =90°时,挡板 AO 所受 压力最小,最小压力 F N2min=mgsin。4、 【解析】人和重物静止,所受合力皆为零,对物分析得到,绳拉力 F 等于物重 200N ;人受四个 力作用,将绳的拉力分解,即可求解。如图所示,将绳的

12、拉力分解得水平分力:Fx=Fcos60°=200×N=100N竖直分力:Fy=Fsin60°=200×N =100N在 x 轴上, F 与 Fx 二力平衡,所以静摩擦力 F=Fx =100N在 y 轴上, 三力平衡得地面对人支持力 F N =G-Fy =(500 - 100 N=100(5- N5、解析 小球受力如图 5乙所示,根据平衡条件知,小球所受支持力 'N F 和' 细线拉力 FT 的合力 F 跟重力是一对平衡力,即 F = G .根据几何关系知,力三角形 FAFN 与几何 三角形 COA 相似.设滑轮到半球顶点B的距离为h,线长

13、AC为L,则有 FN' R = G R+h = FT L ,由于小球从 ' A点移向B点的过程中,G、R、h 均不变, L 减小, 故 FN 大小不变,FT 减小.所以正确答案为C选项. 6、分析:绳子越短,两条绳夹角越大,绳子张力越大。对图 3 作辅助线 OEMN,对 D 点受 力分析如图所示, DBCONE, 有 ,其中 , , 则 7、解析 选 0 点为研究对象,受 F 、 FA 、 FB 三力作用而平衡,此三力构成一封 闭的动态三角形如图 4 乙.容易看出,当 FB 与 FA 垂直即 a + b = 900 时, FB 取最 小值,所以 D 选项正确. 8、分析与解答:

14、小球受力如图所示,小球在重力、斜面的支持力和挡板的支持力三个力共同的作 用下处于平衡状态,因其中两力之和恰好与第三力大小相等方向相反,故这三个力可构成力的三 角形,由矢量三角形的边角关系可知: 当挡板竖直放置时: N1=Gtg N2=G/cos N2=Gcos N2 N1 G G G N1 N1 N2 N1 G N2 当挡板与斜面垂直放置时:N1=Gsin N2 这样比我们建立直角坐标,再利用正交分解法来求解就简单多了。 第 6 页 共 8 页 FT 1 sin b = FT 2 sin a = G sin q ,由于 q 不变, a 由 900 逐渐变为 1800 , sin a 会逐渐变小直到为零,所以 FT 2 逐渐变小直到为零;由于 b 由钝角变为锐角, sin b 先变大后变小,所以 FT 1 先变大后变小. 14、 【解析】 :解析法。木块在运动中受到摩擦力的作用,要减小摩擦力,应当使作用力 F 斜向上 与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论