




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展争辩其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析争辩其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的争辩,为弹塑性理论更好的延进步展做肯定的参考性。关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。尽管材料力学性
2、质简单多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。第一章 岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。岩土塑性力学与传统塑性力学的区分在于岩土类材料和金属材料具有不同的力学特性。岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。正是由于不同的材料特性打算了岩土类材料和金属材料的不同性质。归纳起来,岩土材料有3点基本特性:1.摩擦特性。2.多相特性。3.双强度特性。另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等
3、压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。4.土体的塑性变形依靠于应力路径。对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。物体在变形过程中,外力所做的功以能量(应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复;(2)无论材料是处于单向应力状态,还是简单应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。因此,应力与应
4、变是一一对应的关系。固体材料的塑性变形具有以下特点:(l)塑性变形不行恢复,所以外力功不行逆。塑性变形的产生过程,必定要消耗能量(称耗散能或形变功);(2)在塑性变形阶段,应力和应变关系是非线性的。因此,不能应用叠加原理。又由于加载与卸载的规律不同,应力与应变也不再存在一一对应的关系,也即应力与相应的应变不能唯一地确定,而应当考虑到加载的路径(即加载历史);(3)当受力固体产生塑性变形时,将同时存在有产生弹性变形的弹性区域和产生塑性变形的塑性区域。并且随着载荷的变化,两区域的分界面也会产生变化。第二章 弹塑性力学中常用的简化力学模型对于不同的材料,不同的应用领域,可以接受不同的变形体模型。在确
5、定力学模型时,要特殊留意使所选取的力学模型必需符合材料的实际状况,这是格外重要的,由于只有这样才能使计算结果反映结构或构件中的真实应力及应力状态。另一方面要留意所选取的力学模型的数学表达式应足够简洁,以便在求解具体问题时,不消灭过大的数学上的困难。岩上材料的力学特性不外乎由室内试验、现场试验取得。一般说来,室内试验所得到的力学特性不能完全反映现场实际状况,要得到真实的本构关系必需依据现场试验直接量测荷载变形时间之关系。但该方法不仅花费大而且难以实现,目前大量的还是依据室内试验来打算。岩土材料的力学性质颇为简单,这是由于它们是由固相(土粒子)、液相(空隙中的水)、气相(空隙中的空气)组成,易受密
6、度、空隙率、温度、时间、水等因素影响。岩土材料从微观上应视为非连续体,但从工程角度,宏观上可视为连续体。2.1 抱负弹塑性力学模型当材料进行塑性状态后,具有明显的屈服流淌阶段,而强化程度较小。若不考虑材料的强化性质,则可得到如图2-1所示抱负弹塑性模型,又称为弹性完全塑性模型。在图2-1中,线段OA表示材料处于弹性阶段,线段AB表示材料处于塑性阶段,应力可用如下公式求出: (当) (2-1)由公式(2-1)中只包括了材料常数E和s,故不能描述应力应变曲线的全部特征,又由于在=s处解析式有变化,故给具体计算带来肯定困难。这一力学模型抓住了韧性材料的主要特征,因而与实际状况符合得较好。2.2 抱负
7、线性强化弹塑性力学模型当材料有显著强化率,而屈服流淌不明显时,可不考虑材料的塑性流淌,而接受如图4-4所示线性强化弹塑性力学模型。图中有两条直线,其解析表达式为 (当) (2-2)式中E及E1分别表示线段OA及AB的斜率。具有这种应力应变关系的材料,称为弹塑性线性强化材料。由于OA和AB是两条直线,故有时也称之为双线性强化模型。明显,这种模型和抱负弹塑性力学模型虽然相差不大,但具体计算却要简单得多。在很多实际工程问题中,弹性应变比塑性应变小得多,因而可以忽视弹性应变。于是上述两种力学模型又可简化为抱负刚塑性力学模型。2.3 抱负刚塑性力学模型如图2-1所示,应力应变关系的数学表达式为: (当)
8、 (2-3)上式表明在应力到达屈服极限之前,应变为零,这种模型又称为刚性完全塑性力学模型,它特殊适宜于塑性极限载荷的分析。2.4 抱负线性强化刚塑性力学模型如图2-1所示,其应力应变关系的数学表达式为: (当) (2-4)2.5 幂强化力学模型为了避开在=s处的变化,有时可以接受幂强化力学模型,即取: (2-5)式中n为幕强化系数,介于0与1之间。式(2-5)所代表的曲线(如图2-1所示)在=0处与轴相切,而且有: (当) (2-6)式(2-6)的第一式代表抱负弹性模型,若将式中的A用弹性模量E代替,则为虎克定律式;其次式若将A用s代替,则为抱负塑性(或称抱负刚塑性)力学模型。通过求解式(2-
9、6)则可得=1,即两条直线在=1处相交。由于幂强化模型也只有两个参数A和n,因而也不行能精确地表示材料的全部特征。但由于它的解析式比较简洁,而且n可以在较大范围内变化,所以也经常被接受。 图2-1 常用的应力应变曲线第三章 岩土类介质本构模型岩土塑性与本构模型的进展,主要是围围着两个方面:一是对经典塑性理论的修正与静力本构模型的完善;二是针对不同岩土不同工况进展了很多新型的本构模型。国内学者作了大量的工作,新进展的广义塑性力学既适应岩土类摩擦材料,也适应金属,可以作为岩土塑性力学的理论基础。新型模型中动力模型、简单路径模型等正在渐渐走向有用。本章主要探究岩土体材料的Mohr-Coulomb(M
10、-C)抱负弹塑性模型、Drucker-Prager(D-P)模型、Cam-clay(Cam)模型、Duncan-Chang(D-C)模型、Lade-Duncan(L-D)模型、修正的帽子模型、与蠕变耦合的帽子塑性模型、节理材料模型等。3.1 Mohr-Coulomb(M-C)抱负弹塑性模型Coulomb在土的摩擦试验、压剪试验和三轴试验的基础上,于1773年提出了库仑破坏准则,即剪应力屈服准则,它认为当土体某平面上剪应力达到某一特定值时,就进入屈服。Mohr-Coulomb塑性模型主要适用于在单调荷载下以颗粒结构为特征的材料,如土壤,它与率变化无关。其准则方程形式一般为:。其中,c为土的粘聚力
11、;为土的内摩擦角;为屈服面上的正应力。这个函数关系式通过试验确定。M-C条件为:。在平面上的屈服曲线为一封闭的非正六边形。现在,M-C准则仍被广泛应用,该准则在平面上的拉、压轴相等时即为广义Tresca准则。M-C准则比较符合试验,但是它的缺点在于三维应力空间中的屈服面存在角点奇异性,且没有考虑中间主应力的影响。3.2 Drucker-Prager(D-P)模型1952年Drucker和Prager首先把不考虑中间主应力影响的Coulomb屈服准则与不考虑净水压力P影响的Mises准则联系在一起,提出广义Mises抱负塑性模型,即D-P模型。D-P模型的屈服面方程为:。D-P屈服函数所表示的屈
12、服面在平面上是一个圆,更适合数值计算。但是作为近似计算,D-P模型仍被广泛应用,它的主要缺点也是没有考虑中间主应力的影响。该系列的模型适用于实质上是单调加载的场合,如土基的极限荷载分析。它最适合用于仿真有内摩擦力的材料。该模型具备如下几个特点:1. 应力空间中存在弹性区域与塑性区以及它们的分界面2. 材料是初始各向同性的。3. 屈服行为取决于静水压力的大小。静水压力越大,材料的强度越高,而且材料在软化或硬化时是各向同性的,因此可以用引入与静水压力的相关关系的方式来体现模型在各种状况下的变化。4. 非弹性变形与体积变形同时发生,流淌法则中可考虑剪胀行为,所以供应了两种不同的流淌准则。5. 屈服行
13、为受其次主应力2 大小的影响。6. 材料可以与应变率有关。7. 材料参数可以与温度有关。8. 模型的弹性部分可以是线弹性或非线性的孔隙材料弹性。9. 供应了三种不同的屈服准则供选择。其区分基于三种不同的屈服面子午线:线性、双曲线或一般的指数函数。10. 模型选择的合理性在很大程度上取决于材料的类型和标定模型参数时试验数据的有效性,还取决于压应力值序列是否与材料性质合拍。3.3 Cam-clay(Cam)模型Cam模型由英国剑桥高校Roscoe等人于1963年提出,适用范围为粘土或者正常固结土,模型可应用于土石坝、地基和桩基础等,其屈服面方程为: (3-1)1965年,Roscoe,Burlan
14、d分别争辩了Cam模型屈服面与临界状态线及正常固结线的关系,依据能量方程对Cam模型屈服面的外形进行了修正,提出了修正Cam模型。在平面上修正Cam模型的屈服面是通过原点的椭圆形曲线。屈服面函数为:- (3-2)Cam模型只有3个参数,且易于测定,因此是当前应用最广的模型之一。模型的主要缺点是受到传统塑性理论的限制,且没有充分考虑剪切变形。3.4 Duncan-Chang(D-C)模型1970年Duncan和Chang依据Kondner(1963年)的争辩成果,将三轴试验得到的土体(轴向应变)曲线用下述双曲线方程来表示:。其中,a,b均为试验常数。由试验最终得出D-C模型的切线模量方程为: (
15、3-3)1980年,Duncan依据试验结果提出改用体积变形模量K作为计算参数,将E-V模型修正为E-K模型。DC模型能反映土体的主要变形特性,且接受加载模量和卸载模量来部分反映土的非线性性质,所接受的参数少,具有比较明确的物理意义,且可由常规的三轴剪切试验确定,因而在实际工程中得到了广泛应用。但该模型的主要缺点是不能反映土的剪胀性,也不能反映中间主应力2s对模量的影响,其实际应用受到了肯定的限制。针对很多土体存在剪胀性的真实性状,沈珠江(1986年)等提出了考虑球张量和偏张量相互交叉影响的非线性弹性模型,是一种可以考虑土体剪胀性的非线性应力应变模型。3.5 Lade-Duncan(L-D)模
16、型Lade-Duncan(1975年)依据对砂土的真三轴试验结果,提出了一种适用于砂土类的真三轴弹塑性模型。该模型的屈服函数由试验资料拟合得到,它把土视作加工硬化材料,听从不相关联流淌法则,并接受塑性功硬化规律。在应力空间中屈服面外形是开口三角锥面。屈服面方程为: (3-4)L-D模型是以塑性功为硬化参量,其优点是较好地考虑了剪切屈服和应力Lode角的影响。缺点是需要9个计算参数,而没有充分考虑体积变形,难以考虑静水压力作用下的屈服特性,即使接受非相关联流淌法则也会产生过大的剪胀现象,且不能考虑体缩。3.6修正的帽子模型3.6.1 适用范围这个模型是在子午线为线性的Drucker-Prager
17、模型上增加一个帽子状的屈服面而构成的,其目的有两个:一是对静水压力给出一个上限二是在材料因剪切而屈服时把握体积膨胀。这个模型适用于粘性岩土介质。3.6.2 特点1、考虑了弹、塑性变形,弹性应变可以是线性弹性或孔隙介质的非线性弹性。2、屈服行为与静水压力有关,所以应力空间中的屈服行为有两种状况:屈服面上所对应的是抱负塑性,帽子曲面对应的却是硬化塑性。硬化/软化行为是体积塑性应变的函数。3、塑性变形与体积变形相关:在屈服面上表现为膨胀,在帽子曲面上表现为压缩,在两者的交界线上,为无体积变形的常剪应力状态。4、中间主应力2 对屈服有影响5、在载荷循环时,帽子曲面可给出相应响应,屈服面只能对应单向加载
18、。6、材料是初始各向同性的。7、材料性质可以随温度而转变。3.6.3修正的帽子模型公式和参数模型由两个屈服面组成,一个是子午线为线性的Drucker-Prager屈服面,它体现为与静水压力有关的剪切破坏,另一个是帽子曲面,它体现了受压破坏。帽子模型中Drucker-Prager破坏曲面本身是抱负塑性的,但是它存在一个产生体积膨胀的塑性流淌,使帽子软化,屈服面方程为: (3-5)其中为摩擦角,d为粘聚力。t为偏应力的度量,可以用不同的应力状态(如受拉或受压)来调整t。3.7与蠕变耦合的帽子塑性模型3.7.1适用范围在很多状况下,岩土介质需考虑蠕变造成的影响,一旦加载时段与蠕变发生时段的尺度是同一
19、个数量级时,需考虑蠕变与塑性的耦合求解,与蠕变耦合的帽子塑性模型适合于这类状况。3.7.2特点1、耦合求解帽子塑性方程与蠕变方程;2、帽子塑性模型的弹性阶段为各向同性线弹性,塑性阶段为K=1(平面上是圆)的屈服面,D-P屈服面与帽子屈服面之间无过渡区,即=0 ;3、蠕变模型中有两类蠕变行为:粘性蠕变,它同时发生于剪切破坏区与帽子区。固结蠕变,它只发生于帽子区。图3.7.1 帽子蠕变模型的蠕变等值面3.8 节理材料模型3.8.1适用范围节理材料模型为在不同方向上存在分布度很高的平行节理的岩土介质供应一种简明的,连续介质本构关系,它要求某一方向上各节理层的间距很小,从而使连续介质假定得以成立,这个
20、模型也可以用于存在大量断层的岩石中。3.8.2特点1、考虑弹,塑性变形。2、节理层之间有三种关系:有摩擦的滑动;闭合;分开。一旦节理层分开,材料马上变为正交各向异性体。3、考虑了基于Drucker-prager模型的体积变形导致的破坏。4、节理所组成的整体材料的力学机理既包括了塑性滑移,也包括了膨胀。5、模型供应了合理的应力循环,包括节理的开合和剪力循环。6、材料可以与温度有关.第四章 土的本构模型争辩趋势为了较好的描述土的真实性状,建立土的应力-应变-时间之间的关系,已经进展了大量土的本构模型,并且有些模型的应用相当广泛,对这些传统模型进行改进和修正,使之适用于更广泛的工程问题,比建立一个新
21、的土的模型更具有实际意义。随着土本构争辩的深化,可从以下几个方面开展工作:1)为了精确反映上的非线性、非弹性、软化、剪胀与剪缩性等特性,需要建立和进展简单应力状态与加卸载序列条件下土的本构模型。2)重视模型参数的测定和选用,重视本构模型验证以及推广应用争辩,通过不同类型仪器、不同应力路径的土工试验及工程现场测试等形式,客观地评价和论证已建模型的正确性与牢靠性,全面系统地争辩与比较模型的有用性、局限性及其适用范围,使之更好地为工程建设和科学争辩服务。3)开展非饱和土的本构模型争辩,建立非饱和土的本构模型时应充分考虑土中含水量的影响及颗粒骨架、孔隙水与气体三相之间的界面相互作用及相互交换问题。4)留意土体的微观结构和宏观结构争辩,揭示土结构性及其变化的力学效果。5)土的本构模型中有很多假设条件与实际状况不符,影响了工程计算的精度和适用性,今后应加以改进和提高,建立用于解决实际工程问题的有用性模型,反映土体的真实特性,服务
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东省德州市事业单位工勤技能考试题库(含答案)
- 社会政治面试题目及答案
- 2025年新人教版英语七年级下册全册教学课件
- 2025年物业管理员(高级)职业技能鉴定试卷实操技能训练
- 2025年食品检验工(初级)食品检验发展趋势考试试卷
- 烟台理工学院《钢结构单层工业厂房建筑设计实训》2024-2025学年第一学期期末试卷
- 2025年商务英语高级证书考试试题
- 2025年外贸英语考试预测题及备考技巧
- 徐州工业职业技术学院《细胞生物学原理与技术》2024-2025学年第一学期期末试卷
- 赣西科技职业学院《空气调节课程设计》2024-2025学年第一学期期末试卷
- 医学一等奖《白血病》课件
- 2-第二章-各向异性材料的应力-应变关系
- 发现普洱茶的第一个医学实验报告
- 全自动血液细胞分析仪参数
- (完整版)过去完成时ppt
- 1输变电工程施工质量验收统一表式(线路工程)
- 养老护理员(技师、高级技师)知识考试复习题库(含答案)
- 学校安全“日管控、周排查、月总结”工作制度
- 机械原理课程设计15吨压片机设计
- 2023年五四青年节演讲比赛PPT担负青年使命弘扬五四精神PPT课件(带内容)
- 2023年义务教育音乐2022版新课程标准考试测试题及答案
评论
0/150
提交评论