中考数学一轮全程复习课时练第42课时《阅读理解型问题》(学生版)_第1页
中考数学一轮全程复习课时练第42课时《阅读理解型问题》(学生版)_第2页
中考数学一轮全程复习课时练第42课时《阅读理解型问题》(学生版)_第3页
中考数学一轮全程复习课时练第42课时《阅读理解型问题》(学生版)_第4页
中考数学一轮全程复习课时练第42课时《阅读理解型问题》(学生版)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第42课时阅读理解型问题一、选择题1如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”,下列各组数据中,能作为一个智慧三角形三边长的一组是 ( )A1,2,3 B1,1, C1,1, D1,2,2“如果二次函数yax2bxc的图象与x轴有两个公共点,那么一元二次方程ax2bxc0,有两个不相等的实数根”请根据你对这句话的理解,解决下面问题:若m,n(m<n)是关于x的方程1(xa)(xb)0的两根,且a<b,则a,b,m,n的大小关系是 ( )Am<a<b<n Ba<m<n<bCa<m<b<n Dm<

2、;a<n<b3我们知道,一元二次方程x21没有实数根,即不存在一个实数的平方等于1.若我们规定一个新数“i”,使其满足i21(即方程x21有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1i,i21,i3i2·i(1)·ii,i4(i2)2(1)21.从而对任意正整数n,我们可得到i4n1i4n·i(i4)n·ii,同理可得i4n21,i4n3i,i4n1,那么,ii2i3i4i2 014i2 015的值为( )A0 B1 C1 Di二、填空题4对于任意实数m,n,定义一种运算mnmn

3、mn3,等式的右边是通常的加减和乘法运算例如:353×535310.请根据上述定义解决问题:若a<2x<7,且解集中有两个整数解,则a的取值范围是_4a5_5如果关于x的一元二次方程ax2bxc0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是_(写出所有正确说法的序号)方程x2x20是倍根方程;若(x2)(mxn)0是倍根方程,则4m25mnn20;若点(p,q)在反比例函数y的图象上,则关于x的方程px23xq0是倍根方程;若方程ax2bxc0是倍根方程,且相异两点M(1t,s),N(4t,s)都在抛物线yax

4、2bxc上,则方程ax2bxc0的一个根为.6规定sin(x)sinx,cos(x)cosx,sin(xy)sinx·cosycosx·siny,据此判断下列等式成立的是_(写出所有正确的序号)cos(60°);sin75°;sin2x2sinx·cosx;sin(xy)sinx·cosycosx·siny.三、解答题7如果抛物线yax2bxc过定点M(1,1),则称此抛物线为定点抛物线(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式小敏写出了一个答案:y2x23x4,请你写出一个不同于小敏的答案;

5、(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线yx22bxc1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答8如果二次函数的二次项系数为1,则此二次函数可表示为yx2pxq,我们称p,q为此函数的特征数,如函数yx22x3的特征数是2,3(1)若一个函数的特征数为2,1,求此函数图象的顶点坐标;(2)探究下列问题:若一个函数的特征数为4,1,将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数;若一个函数的特征数为2,3,问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为3,4?9阅读下列材料,并用相关的思想方法解决问题计算:&#

6、215;×.令t,则原式(1t)ttt2ttt2.(1)计算:××;(2)解方程(x25x1)(x25x7)7.10如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”;(1)请用直尺与圆规画一个“好玩三角形”;(2)如图,在RtABC中,C90°,tanA,求证:ABC是“好玩三角形”;(3)如图,已知菱形ABCD的边长为a,ABC2,点P,Q从点A同时出发,以相同的速度分别沿折线ABBC和ADDC向终点C运动,记点P所经过的路程为s.当45°时,若APQ是“好玩三角形”,试求的值当tan的取值在什么范围内,点P,Q在运动过程中,有且只有一个APQ能成为“好玩三角形”请直接写出tan的取值范围11在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”例如点(1,1),(0,0),(,),都是“梦之点”,显然,这样的“梦之点”有无数个(1)若点P(2,m)是反比例函数y(n为常数,n0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y3kxs1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论