完全平方公式和平方差公式_第1页
完全平方公式和平方差公式_第2页
完全平方公式和平方差公式_第3页
完全平方公式和平方差公式_第4页
完全平方公式和平方差公式_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流完全平方公式和平方差公式.精品文档.乘法公式1平方差公式(1)平方差公式的推导:因为(ab)(ab)a2ababb2a2b2,所以(ab)(ab)a2b2.【例1】 利用平方差公式计算(1) (2a3b)(2a3b); (2)503×497.2完全平方公式(1)两数和的完全平方公式:(ab)2a22abb2;两数差的完全平方公式:(ab)2a22abb2.析规律 完全平方公式的特征完全平方公式总结口诀为:首平方,尾平方,首尾二倍积,加减在中央【例2】 计算:(1) (4mn)2; (2)(y)2; (3)(ab)2; (4)(2ab

2、)2.3添括号法则法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号警误区 添括号法则的易错点添括号时,如果括号前面是负号,括到括号里面的各项都改变符号,不可只改变部分项的符号,如:abca(bc),这样添括号时只是改变了第一项的符号,而第二项的符号没有改变,所以这样添括号是错误的【例3】 填空:(1)(xyz)(xyz)x()x();(2)(xyz)(xyz)x()x()【例4】 如图,在边长为a的正方形中剪去一个边长为b的小正方形(ab),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式_【例6】 观察下列各

3、式的规律:12(1×2)222(1×21)2;22(2×3)232(2×31)2;32(3×4)242(3×41)2;写出第n行的式子,并证明你的结论类型一:巧用乘法公式 类型二:平方差与完全平方公式混用 类型三:完全平方公式在三角形中的运用 例3、已知ABC的三边长a,b,c满足,试判断ABC的形状 类型四:利用乘法公式解方程(组) 例4:类型五:多项式的证明 例5:证明无论a,b为何值,多项式 类型六:灵活运用乘法公式解题 例6、计算拓展:三项完全平方公式:二次三项式:立方和公式:立方差公式:1、 若 2、 已知 3、 已知实数

4、6、将代数式 7、若_-8、已知_9、若_-10、已知11、知实数 课后练习1.下列各式中,相等关系一定成立的是( )A.(xy)2(yx)2 B.(x+6)(x6)x26C.(x+y)2x2+y2 D.x2+2xy2y2(x+y)22.下列运算正确的是( )A.(a+3)2a2+9 B.(xy)2x2xy+y2C.(1m)212m+m2 D.(x2y2)(x+y)(xy)x4y43.将面积为a2的正方形边长增加2,则正方形的面积增加了( )A.4 B.2a+4 C.4a+4 D.4a4.下列多项式乘法中,不能用平方差公式计算的是( )A.(a+1)(2a2) B.(2x3)(2x+3)C.(

5、2y)(+2y) D.(3m2n)(3m2n)5.不等式(2x1)2(13x)25(1x)(x+1)的解集是( )A.x2.5 B.x2.5 C.x2.5 D.x2.56.计算:(1)(1.2xy)(y1.2x); (2)15×(14);(3)2x2(x+y)(xy)(zx)(x+z)+(yz)(y+z); (4)(a2b+3c)(a+2b3c).7.(1)已知x+y6,xy4,求x2+y2,(xy)2,x2+xy+y2的值.(2) 已知a(a3)(a23b)9,求ab的值.1.计算:(1)(a2+1)(a21)(a2)·a2; (2)(2ab)(2a+b)(3ab)(3a+b);(3)x2(4x)2; (4)(3x2y)24(2xy)(xy).2.已知(a+b)27,(ab)24,求a2+b2和ab的值.3.已知ABC的三边a、b、c满足a2+b2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论