




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上实验名称:曲线拟合的最小二乘法实验目的了解曲线拟合的最小二乘法实验类型设计型实验环境Windows XP TC实验内容相关知识:已知Ca,b中函数f(x)的一组实验数据(xi,yi)(i=0,1,m),其中yi=f(xi)。设是Ca,b上线性无关函数族。在中找函数f(x) 曲线拟合的最小二乘解,其法方程(组)为: 其中, k=0,1,n特别是,求函数f(x) 曲线拟合的线性最小二乘解的计算公式为:数据结构:两个一维数组或一个二维数组算法设计:(略)实验用例: 已知函数y=f(x)的一张表:x0102030405060708090y6867.166.465.664.66
2、1.861.060.860.460试验要求:利用曲线拟合的线性最小二乘法求被逼近函数f(x)在点x=55处的近似值,并画出实验数据和直线。编写代码:#include<stdio.h>#include<stdlib.h> #include<graphics.h>double qiuhe1(double a102,int p)int i;double y;y=0;for(i=0;i<10;i+)y=y+aip;return y;double qiuhe2(double a102,int p)int i;double y=0;for(i=0;i<10;
3、i+)y=y+ai0*aip;return y;double nihe(double a102,double x)double a1,b,y;a1=(10*qiuhe2(a,1)-qiuhe1(a,0)*qiuhe1(a,1)/(10*qiuhe2(a,0)-qiuhe1(a,0)*qiuhe1(a,0);b=(qiuhe2(a,0)*qiuhe1(a,1)-qiuhe1(a,0)*qiuhe2(a,1)/(10*qiuhe2(a,0)-qiuhe1(a,0)*qiuhe1(a,0);y=a1*x+b;return y;int main()double a102=0,68,10,67.1,20
4、,66.4,30,65.6,40,64.6,50,61.8, 60,61.0,70,60.8,80,60.4,90,60; double x,x1,q=1; char c12; int i; long n; int arw6=515,235,520,240,515,245; int arw16=315,45,320,40,325,45; int gdriver=IBM8514; int gmode=IBM8514HI; initgraph(&gdriver, &gmode, "c:TC20BGI");cleardevice();printf("in
5、put x:n");scanf("%lf",&x);printf("%fn",nihe(a,x);n=nihe(a,x)*+1;c0='y'c1='=' c4='.' for(i=10;i>1;i-) if(i!=4) ci=n%10+48; n=n/10; c11='0'x1=x;setbkcolor(7); setcolor(14);setlinestyle(0,0,3);drawpoly(3,arw);drawpoly(3,arw1);line(120,240,
6、520,240);line(320,40,320,440);x=0;setcolor(2);setlinestyle(0,0,1); line(0+320),(int)(240-nihe(a,0)*q),(90+320),(int)(240-nihe(a,90)*q); setcolor(3); outtextxy(320,30,"Y"); outtextxy(310,245,"O"); outtextxy(525,240,"X"); outtextxy(x1+330),(240-nihe(a,x1)-10),c); settexts
7、tyle(4,0,4); outtextxy(450,400,"Nihe.");for(i=0;i<=9;i+) putpixel(ai0+320),(240-ai1*q),11);setcolor(4);setlinestyle(1,0,1);line(x1+320),(240-nihe(a,x1)*q)-80),(x1+320),(240-nihe(a,x1)*q)+120);getch();closegraph();实验结果(测试用例、实验结果)实验总结与心得通过本次实验,对曲线拟合的最小二乘法有了更深刻的了解!概念最小二乘法多项式曲线拟合,根据给定的m个点,并
8、不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= (x)。原理原理部分由个人根据互联网上的资料进行总结,希望对大家能有用 给定数据点pi(xi,yi),其中i=1,2,m。求近似曲线y= (x)。并且使得近似曲线与y=f(x)的偏差最小。近似曲线在点pi处的偏差i= (xi)-y,i=1,2,.,m。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小
9、 3.使偏差平方和最小 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: &
10、#160;3. 为了求得符合条件的a值,对等式右边求ai偏导数,因而我们得到了: . 4.
11、将等式左边进行一下化简,然后应该可以得到下面的等式: . 5. 把这些等式表示成矩阵的形式,就可以得到下面的矩阵:
12、 6. 将这个范德蒙得矩阵化简后可得到: 7. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。实现运行前提:1. Python运行环境与编辑环境;2. Matplotlib.pyplot图形库,可用于快速绘制2D图表,与matlab中的plot命令类似,而且用法也基本相同。代码:python
13、 1. # coding=utf-8 2. 3. ''''' 4. 作者:Jairus Chan 5. 程序:多项式曲线拟合算法 6. ''' 7. import matplotlib.pyplot as plt 8. import math 9. import numpy 10
14、. import random 11. 12. fig = plt.figure() 13. ax = fig.add_subplot(111) 14. 15. #阶数为9阶 16. order=9 17. 18. #生成曲线上的各个点 19. x = numpy.arange(-1,1,0.02) 2
15、0. y = (a*a-1)*(a*a-1)*(a*a-1)+0.5)*numpy.sin(a*2) for a in x 21. #ax.plot(x,y,color='r',linestyle='-',marker='') 22. #,label="(a*a-1)*(a*a-1)*(a*a-1)+0.5" 23. 24. #生成的曲线上的各个点偏移一下,并放入到xa,ya中去
16、 25. i=0 26. xa= 27. ya= 28. for xx in x: 29. yy=yi 30. d=float(random.randint(60,140)/100 31. #ax.plot(xx*d,yy*d,color='m',line
17、style='',marker='.') 32. i+=1 33. xa.append(xx*d) 34. ya.append(yy*d) 35. 36. '''''for i in range(0,5): 37.
18、160; xx=float(random.randint(-100,100)/100 38. yy=float(random.randint(-60,60)/100 39. xa.append(xx) 40. ya.append(yy)''' 41. 42. ax.plot(xa,ya,color='m',lines
19、tyle='',marker='.') 43. 44. 45. #进行曲线拟合 46. matA= 47. for i in range(0,order+1): 48. matA1= 49. for j in range(0,order+1):
20、; 50. tx=0.0 51. for k in range(0,len(xa): 52. dx=1.0 53.
21、60; for l in range(0,j+i): 54. dx=dx*xak 55. tx+
22、=dx 56. matA1.append(tx) 57. matA.append(matA1) 58. 59. #print(len(xa) 60. #print(matA00) 61. matA=numpy.array(matA) 62. 63. matB=
23、160;64. for i in range(0,order+1): 65. ty=0.0 66. for k in range(0,len(xa): 67. dy=1.0 68.
24、60; for l in range(0,i): 69. dy=dy*xak 70. ty+=yak*dy 71. matB.append(ty) 72. 73. matB=numpy.array(matB) 74. 75. matAA=numpy.linalg.solve(matA,matB) 76. 77. #画出拟合后的曲线 78. #print(matAA) 79. xxa= numpy.arange(-1,1.06,0.01) 80. yya=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废旧金属回收与综合利用技术合作协议
- 智能家居技术合作补充协议
- 电商仓储物流安全责任与风险评估协议
- 虚拟偶像虚拟形象版权交易与授权合同
- 氢燃料电池产品寿命测试员聘用合同
- 网络平台内容监控算法授权租赁及效果评估合同
- 幼儿园教师全职聘用合同(园本课程研发)
- 宠物医疗中心兽医助理专业技术合作合同
- 交通安全标志维护补充协议
- 孤儿抚养费银行账户监管与监护权变更服务合同
- 数字贸易学 课件 第18、19章 全球数字经济治理概述、包容性发展与全球数字鸿沟
- DLT 866-2015 电流互感器和电压互感器选择及计算规程解读
- 房屋抵押个人借款标准合同
- 云南省昆明市2022-2023学年二年级下学期语文期中试卷(含答案)
- 口腔预防保健课件 英文
- 读后续写-制作稻草人(T8联考)课件-高考英语作文复习专项
- 研发成果商业化转化(资料)
- 高速铁路关键技术
- 丁丽娟《数值计算方法》五章课后实验题答案(源程序很详细-且运行无误)
- 情境学习理论在教育中的应用
- 血糖监测操作流程及考核标准(100分)
评论
0/150
提交评论