




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、教育实习教案 学院 数学与计算机科学学院 专业 数学与应用数学 实习生 林彩虹 学号 本校指导教师 柯跃海 实习学校指导教师陈丹 原任课教师陈丹 2014 年 10 月 日 (星期 ) 第 节课(本人本次实习第 1 个教案)课题:§25等比数列的前项和课时安排:第一课时(共两课时)课标要求:(1) 探索并掌握等比数列的前项和公式(2)能在具体的问题情境中,发现数列的等比关系,并能用相关的知识解决相应的问题三维目标知识与技能:(1)引导学生探究进而导出等比数列的前项和公式; (2)引领学生合理而又准确地运用等比数列的前项和公式求解一些简单的相关问题,并在此过程中,帮助学生加深对等比数列
2、前项和公式结构形式的认识过程与方法:(1)在等比数列前项和公式的导出过程中,引领学生体会“类比”、“转化”、“分类与整合”以及“特殊与一般”等数学思维方式和思想方法 (2)帮助学生理解并掌握具有一般意义的数列求和方法“错位相减法”情感、态度与价值观:(1)引导学生在等比数列前项和公式的导出过程中,体验知识的“横”“纵”关联,进而形成认识世界、认识事物所必须的科学世界观; (2)引导学生在公式的应用过程中,体验“观察”、“比较”、“抽象”、“概括”等逻辑方式的价值,进而产生学习数学、运用数学所必须的积极情感和态度,正确地认识数学知识与数学学习的价值所在教学重点:(1)理解等比数列前项和公式的导出
3、; (2)掌握等比数列前项和公式的初步应用教学难点: 等比数列前项和公式的导出教学辅助手段: 多媒体辅助教学工具教学过程:一、温故知新首先回忆一下前两节课所学主要内容:1等比数列的定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母表示,即:2.等比数列的通项公式: , 3 性质:若,处理方式:个别提问,教师完善并板演二、引入新课国际象棋起源于古代印度。相传国王要奖赏国际象棋的发明者。问他想要什么。发明者说:“请在棋牌的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒。依此类推,每
4、个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子。请给我足够的麦粒以实现上述要求。”国王觉得这个要求不高,就欣然同意了。那么这位发明者到底需要多少颗麦粒?那么,同学们,你们知道发明者要的是多少粒小麦吗?处理方式:教师朗读题干的同时,强调需要注意的要点,将情景抽象化帮助学生理解,引导学生写出麦粒总数并板书要求解的等式()师生互动,探究问题是什么数列呢?有什么特征? 求应归结问什么数学问题呢?探讨1:设,记为(1)式,注意观察每一项的特征,有何联系(引导学生发现后一项都是前一项的2倍)探讨2:如果我们把每一项都乘以2,就变成了后一项,(1)式两边同乘以2,则有,记为(2)式比较
5、(1)(2)式,你有什么发现?留出时间给学生做充分的比较,经过比较、研究,引导学生发现把两式相减,相同的项就消去了,得到教师指出,这就是“错位相减法”,并要求学生纵观全过程,反思:为什么(1)式两边要乘以2呢?三、问题解决思考1:对于一般的等比数列,我们可不可以像等差数列一样求出等比数列的前n项和?设等比数列,首项,公比,如何求前项和?类比特殊的的求解过程。这里让学生自主完成,对个别学生进行指导,最后教师规范证明过程: ;如果记,根据等比数列的通项公式,得那么两式相减就可以得到:思考2:由直接得对不对?这里能不能取1?等比数列中的公比能不能为1?如果,该数列变成什么数列?如果,则有 如果,那么
6、即思考3:根据等比数列的通项公式,在的情况下,其前项和公式又可改写为,所以整理等比数列的前项和公式得处理方式:通过通项公式的导入,形成等比数列的前项和公式的另一种形式对比公比的情形的等比数列前项和公式,我们会发现两个公式分别适用于不同的已知条件下,如适用于,已知的情况下;适用于,已知的情况下以后求等比数列的前项和就用公式法来求教师引导学生对比等差数列的前项和公式,并结合等比数列的通项公式,从方程角度认识等比数列的前项和公式,以便正确灵活地运用它在等比数列的通项公式及前和公式中共有五个量,只要知道其中任意三个量,都可以通过建立方程(组)等手段,求出其余两个量问题1【课本例题1】求下列等比数列前8
7、项和:(1),; (2),解:(1)因为,所以当时,; (2)由,可得又由,可得于是当时,需要注意的是,公比可以是正数也可以是负数问题2等比数列的公比为,首项,则等于( )A B C D解:由于,根据等比数列前项和公式, 故选C问题3在等比数列中,求其前项和解:由于,所以当时, 处理方式:简单板书题干,带着学生分析已知条件解决问题问题4在等比数列中,求其前项和解:由,可得教师引导学生对比等差数列的前项和公式,并结合等比数列的通项公式,从方程角度认识等比数列的前项和公式,以便正确灵活地运用它在等比数列的通项公式及前和公式中共有五个量,只要知道其中任意三个量,都可以通过建立方程(组)等手段,求出其
8、余两个量;问题5在等比数列中,已知,求和解:已知,及,于是选择采用公式,求得 再根据等比数列的通项公式,求得问题6已知等比数列中,求和法一:错解:由等比数列的前项和公式,得, 解得故错因分析:在上面的求解过程中,没有讨论公比是否为1,就直接使用了等比数列的前项和公式,从而有可能出现漏解情况解:当公比时,符合上述条件,且; 当公比时,由等比数列的前项和公式,得, 解得故法二:则则,得(备选题)问题7 求数列,的前n项和。解:当,当, 处理方式:引导学生分类讨论,提示学生通过错位相减法求解,若时间充裕则讲解完成,若时间不充裕则提示完后留给课后作业,第二课时讲解。四、课堂小结(1)回顾等比数列的前项和公式,并强调已知不同条件,对前项和公式的选择;(2)回顾等比数列前项和公式的导出过程,并指出其中所使用的方法“错位相减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保尊宝合同范例
- 住房返租合同范例
- 医疗AI的伦理边界深入探讨其发展及道德考量
- 《长方体和正方体的认识》的教学设计新
- 建筑工程师专业技术工作总结模版
- 医疗人才队伍建设的挑战与对策
- 个人佣金协议合同范例
- 代理小区广告合同范例
- 医疗健康数据科学的未来趋势与挑战
- 小儿完全性肺静脉异位引流的临床护理
- GB/T 12704.2-2009纺织品织物透湿性试验方法第2部分:蒸发法
- 公众责任险、财产一切险培训课件
- 2022山东高考语文答题卡(新高考I卷)word版3
- lovo操作手册中文翻译版-professorgong
- 有限空间作业气体检测记录表
- 重力式降落救生艇的降落和释放装置课件
- DB37∕T 5118-2018 市政工程资料管理标准
- 土地集约利用教学课件
- 《食堂安全培训》ppt
- 油水井管理及动态分析.
- 完整版电力工程设计资质分级标准
评论
0/150
提交评论