




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、简单线性规划的应用张园和教学目标:1会用线性规划的理论和方法解决一些较简单的实际问题; 2培养学生观察、分析、联想、以及作图的能力,渗透集合、化归、数形结合的数学思想,培养学生自主探究意识,提高学生“建模”和解决实际问题的能力;教学重、难点:教学重点:把实际问题转化成线性规划问题,即建模,并给出解答教学难点:1建立数学模型把实际问题转化为线性规划问题;2寻找整点最优解的方法教学方法:讲练结合、分组讨论法教学过程:(一)讲解新课例1、医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每含5单位蛋白质和10单位铁质,售价3元;乙种原料每含7单位蛋白质和4单位铁质,售价2元。若病人每餐至少需要35
2、单位蛋白质和40单位铁质,试问:应如何使用甲、乙原料,才能既满足营养又使费用最省?解析:蛋白质(单位/10g)铁质(单位/10g)售价(元/10g)甲5103乙742设甲、乙两种原料分别用和,需要的费用为,病人每餐至少需要35单位蛋白质,可表示为。同理,对铁质的要求可表示为。l0:3x+2y=05x+7y=3510x+4y=40A-2-264210642yxO问题成为:在约束条件下,求目标函数的最小值。作出可行域,令,作直线。由图可知,把直线平移至顶点时,取最小值。由,元。所以用甲种原料,乙种原料,费用最省。小结:简单线性规划应用问题的求解步骤:(教师示意学生观看板书,并给予适当的提示)1将已
3、知数据列成表格的形式(这一步可以省略),设出变量x,y和z;2找出约束条件和目标函数;3作出可行域,并结合图象求出最优解; 4按题意作答例2、某厂生产一种产品,其成本为27元/,售价为50元/,生产中,每千克产品产生的污水,污水有两种排放方式:方式一:直接排入河流方式二:经厂内污水处理站处理后排入河流,但受污水处理站技术水平的限制,污水处理率只有,污水处理站最大处理能力是,处理污水的成本是5元/另外,环保部门对排入河流的污水收费标准是元/,且允许该厂排入河流中污水的最大量是,那么,该厂应选择怎样的生产与排污方案,可使其每净收益最大?分析:为了解决问题,首先要搞清楚是什么因素决定收益 净收益 =
4、 售出产品的收入生产费用 其中生产费用包括生产成本、污水处理、排污费等设该厂生产的产量为,直接排入河流的污水为,每小时净收益为元,则:(1)售出产品的收入为元/(2)产品成本为元/(3)污水产生量为,污水处理量为,污水处理费为元/(4)污水未处理率为,所以污水处理厂处理后的污水排放量为,环保部门要征收的排污费为元/(5)需要考虑的约束条件是:(1)污水处理能力是有限的,即(2)允许排入河流的污水量也是有限的即l0:20.708x-9.96y=00.3x-y=0.90.3x-y=09x+170y=453-11221yxO解析:根据题意,本问题可归纳为:在约束条件下,求目标函数的最大值作出可行域。
5、令,作直线,由图可知,平移直线,在可行域中的顶点处, 取得最大值。由故该厂生产该产品,直接排入河流的污水为时,可使每小时净收益最大,最大值为(元)答:该厂应安排生产该产品,直接排入河流的污水为时,其每小时净收益最大。例3、滨江校区高一(17)班举行元旦文艺晚会,布置会场要制作“中国结”,班长购买了甲、乙两种颜色不同的彩绳,把它们截成A、B、C三种规格甲种彩绳每根8元,乙种彩绳每根6元,已知每根彩绳可同时截得三种规格彩绳的根数如下表所示:A规格B规格C规格甲种彩绳211乙种彩绳123今需要A、B、C三种规格的彩绳各15、18、27根,问各截这两种彩绳多少根,可得所需三种规格彩绳且花费最少?分析:
6、将已知数据列成下表甲种彩绳乙种彩绳所需条数A规格2115B规格1218C规格1327单 价86解析:设需购买甲种彩绳x根、乙种彩绳y根,共花费z元,则,z=8x+6y在用图解法求解的过程中,学生发现:直线l最先经过可行域内的点A(3.6,7.8)并不是最优解,学生马上想到最优解可能是(4,8),引导学生计算花费,花费为80元,有没有更优的选择?进一步激发学生兴趣:可能是(3,9)吗? 此时花费为78元,可能是(2,10)吗?此时花费为76元,可能是,如何寻找最优解?满足题意的点是可行域内的整点,首先要找整点,引导学生采用打网格或利用坐标纸的方法;根据线性规划知识,平移直线l,最先经过的整点坐标
7、是整数最优解由网格法可得:当x=3,y=9时,zmin=78答:班长应购买3根甲种彩绳、9根乙种彩绳,可使花费最少。小结:确定最优整数解的方法:1若可行域的“顶点”处恰好为整点,那么它就是最优解;(在包括边界的情况下)2若可行域的“顶点”不是整点或不包括边界时,一般采用网格法,即先在可行域内打网格、描整点、平移直线l、最先经过或最后经过的整点坐标是整数最优解;这种方法依赖作图,所以作图应尽可能精确,图上操作尽可能规范(二)课堂练习1已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿
8、运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?解析:设甲煤矿向东车站运万吨煤,乙煤矿向东车站运万吨煤,那么x=200y=300x+y=280x+y=140xyO总运费z=x+1.5(200x)+0.8y+1.6(300y)(万元) ,即z=7800.5x0.8y.x、y应满足:作出上面的不等式组所表示的平面区域,设直线x+y=280与y轴的交点为M,则M(0,280) ,把直线l:0.5x+0.8y=0向上平移至经过平面区域上的点M时,z的值最小。点M的坐标为(0,280),
9、甲煤矿生产的煤全部运往西车站、乙煤矿向东车站运280万吨向西车站运20万吨时,总运费最少。 2高一年级准备组织学生分批去师大新校区参观,每天至少要派送480名学生学校与某旅游公司联系客运,该公司有7辆小巴、4辆大巴,其中小巴能载16人、大巴能载32人 已知每辆客车每天往返次数小巴为5次、大巴为3次,每次运输成本小巴为48元,大巴为60元请问每天应派出小巴、大巴各多少辆,能使总费用最少?解析:设每天派出小巴x辆、大巴y辆,总运费为z元,则 ,z=240x+180y由网格法可得:x=2,y=4时,zmin=1200答:派4辆小巴、2辆大巴费用最少(三)回顾与小结1把实际问题转化成线性规划问题即建立
10、数学模型的方法建模主要分清已知条件中,哪些属于约束条件,哪些与目标函数有关。求线性目标函数在线性约束条件下的最优解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解2求解整点最优解的解法:网格法网格法主要依赖作图,要规范地作出精确图形 (四)布置作业1、P109页 B组第2题2、要将甲、乙两种长短不同的钢管截成A、B、C三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示: 规格类型钢管类型A规格B规格C规格甲种钢管214乙种钢管231Oxy4x+y=182x+2y=13x+3y=16今需A、B、C三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少解析:设需截甲种钢管x根,乙种钢管y根,则作出可行域(如图):目标函数为,作出一组平行直线中(t为参数)经过可行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肋骨骨折护理查房课件
- 肋软骨三维重建课件
- 农业新质生产力与品牌建设
- 安全知识培训力度课件
- 制造业开发区的新质生产力实践
- 解析卷-山东省曲阜市中考数学真题分类(勾股定理)汇编单元测评练习题(含答案详解)
- 2025年教师招聘之《幼儿教师招聘》试卷及答案详解(全优)
- 2025-2026年教师招聘之《幼儿教师招聘》通关题库含答案详解(轻巧夺冠)
- 安全部署实战讲解
- 2025年教师招聘之《幼儿教师招聘》考前冲刺练习题库附参考答案详解(培优a卷)
- 房屋市政工程有限空间作业安全管理指南
- 布病防培训课件
- 工程造价咨询绿色施工支持措施
- 法律法规师德师风培训内容
- 销售商务礼仪培训课程
- 三七销售培训课件
- 《中国尖锐湿疣临床诊疗指南(2021版)》解读
- 租金费用收取管理制度
- 建筑垃圾处理技术标准(CJJT 134-2019)
- 五年级美术素养测评模拟测试
- 木工课堂安全管理制度
评论
0/150
提交评论