




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章积分计算教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。3.有理函数的不定积分是求无理函数和三
2、角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式;教学时数:18学时§5.1 原函数与不定积分教学要求: 积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公
3、式。教学重点:深刻理解不定积分的概念。一、新课引入: 微分问题的反问题,运算的反运算.二、讲授新课: (一)不定积分的定义:1、原函数定义 设函数在区间有定义,存在函数,若,有,则称函数是在区间的原函数,或简称是的原函数。定理 若是函数在区间的一个原函数,则函数的无限多个原函数仅限于的形式。2、不定积分定义函数的所有原函数称为函数的不定积分。表为:。其中称为被积函数,称为被积表达式,称为积分常数。可见,若有原函数,则的全体原函数所成集合为.例1 填空: ; ( ; ; ; ;. (二)基本积分表及其使用1.运算法则:(1)或;(2)或;(3)();(4)。2.积分公式:
4、1、,其中为常数。特别地:;2、,其中是常数,且;3、;4、,其中,且;特别地;5、;6、;7、;8、;9、;10、;11、;12、。3.例题例2求。例3求。例4求。例5求.例6求。(三)不定积分的基本性质: 以下设和有原函数.(1).(先积分后求导, 形式不变应记牢!).(2). (先求导后积分, 多个常数需当心!)(3)时, (被积函数乘系数,积分运算往外挪!) (4)由(3)(4)可见, 不定积分是线性运算, 即对, 有 ( 当时,上式右端应理解为任意常数. )例7. 求 . (=2 ). (四)利用初等化简计算不定积分: 例8. 求.例9.例10.例11.例12.
5、例13 .三、小结练习P202 1 (1,3,5,7,9,11,13,15) 2 3作业P202 1 (2,4,6,8,10) 4 §5.2换元积分法教学要求: 换元积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。教学重点:熟练地应用换元积分公式;一、新课引入:由直接积分的局限性引入 二、讲授新课: (一). 第一类换元法 凑微分法:定理1 (第一换元积分法)若函数在可导,且。有,则函数存在原函数,即。常见微
6、分凑法:凑法1例1 求。例2 求。例3 求。例4求。例5求。凑法2 . 特别地, 有和 . 例6求。例7求。例8求。凑法3 例9(1)(2)例10其他凑法举例: 例11.例12 例13.例14. 例15. (二)第二类换元法 拆微法:从积分出发,从两个方向用凑微法计算,即 = = =引出拆微原理.定理2(第二换元积分法)若函数在可导,且,函数在有定义,有,则函数在存在原函数,且。例16求。例17求。例18求。例19求, 常用代换有所谓无理代换, 三角代换, 双曲代换, 倒代换, 万能代换, Euler代换等.我们着重介绍三角代
7、换和无理代换.1. 三角代换:(1) 正弦代换: 正弦代换简称为“弦换”. 是针对型如 的根式施行的, 目的是去掉根号. 方法是: 令, 则例20 解法一 直接积分; 解法二 用弦换.例21. 例22 .(2) 正切代换: 正切代换简称为“切换”. 是针对型如的根式施行的, 目的是去掉根号. 方法是: 利用三角公式即 令 . 此时有 变量还原时, 常用所谓辅助三角形法.例23. 解 令 有. 利用例22的结果, 并用辅助三角形, 有= =例24 (3)正割代换: 正割代换简称为“割换”. 是针对型如 的根式施行的, 目的是去掉根号. 方法是: 利用三角
8、公式 令有变量还愿时, 常用辅助三角形法.例25解.例26.解法一 ( 用割换 )解法二 ( 凑微 ) 2. 无理代换:若被积函数是的有理式时, 设为的最小公倍数,作代换, 有.可化被积函数为 的有理函数.例27.例28.若被积函数中只有一种根式或可试作代换或. 从中解出来.例29. 例30例31 (给出两种解法)例32. 本题还可用割换计算, 但较繁. 3. 双曲代换: 利用双曲函数恒等式 , 令 , 可去掉型如 的根式. . 化简时常用到双曲函数的一些恒等式, 如:例33 .本题可用切换计算,但
9、归结为积分, 该积分计算较繁. 参阅后面习题课例3.例34 解.例35 . 解4. 倒代换: 当分母次数高于分子次数, 且分子分母均为“因式”时, 可试用倒代换例36 .5. 万能代换: 万能代换常用于三角函数有理式的积分(参1P261). 令,就有, ,例37 .解法一 ( 用万能代换 ) .解法二 ( 用初等化简 ) .解法三 ( 用初等化简, 并凑微 )例38解=.代换法是一种很灵活的方法.三、小结 练习P213 1 2 3 作业P213 2(2,4,6,8,10) 3 (1,3,5,7)
10、67;5.3分部积分法教学重点:分部积分的应用。教学难点:分部积分适用的条件。基本内容:分部积分;基本要求:记住分部积分公式,知道求哪些函数的不定积分应用分部积分公式;并能适当的选取换元函数,熟练地应用换元公式。一、分部积分法设、是的可导函数,则,因此或,称为分部积分公式。一般来说,被积函数形式为:,等都用分部积分法。二. 分部积分法的形式:导出分部积分公式.介绍使用分部积分公式的一般原则. 1. 幂 X 型函数的积分: 分部积分追求的目标之一是: 对被积函数两因子之一争取求导, 以使该因子有较大简化, 特别是能降幂或变成代数函数. 代价是另一因子用其原函数代替( 一般会变繁 ),
11、但总体上应使积分简化或能直接积出. 对“幂” 型的积分, 使用分部积分法可使“幂”降次, 或对“”求导以使其成为代数函数.例1 (幂对搭配,取对为u) 例2 (幂三搭配,取幂为u) 例3 (幂指搭配,取幂为u) 例4 (幂指搭配,取幂为u) 例5 例6 (幂反搭配,取反为u) 2 建立所求积分的方程求积分: 分部积分追求的另一个目标是: 对被积函数两因子之一求导, 进行分部积分若干次后, 使原积分重新出现, 且积分前的符号不为 1. 于是得到关于原积分的一个方程. 从该方程中解出原积分来. 例7例8求和 解 解得 例9解= (参阅例41)
12、解得 例10=,解得 .例11 = =,解得 .三、小结 (略)练习P217 1(1,3,5,7) 2(2,4,6,8)作业P217 1(2,4,6,8) 2(1,3,5,7)§5.4广义积分 教学重点:无穷积分的性质及敛散性判别。教学难点:无穷积分的敛散性判别。主要内容:1、三种无穷积分()的概念以及它们收敛与发散的概念;2、无穷积分与级数收敛性的关系;3、无穷积分的性质,包括Cauchy准则、收敛的线性性、分部积分公式;4、无穷积分的绝对收敛于条件收敛的概念及判别法,优函数的绝对收敛判别法,条件收敛的判别法。基本要求:1、掌握无穷积分收敛与发散的判别法,基本上会用收敛定
13、义和性质计算无穷积分和证明无穷积分的有关问题;2、基本会用敛散性定义和各种敛散性判别法判别无穷积分的敛散性。基本方法:无穷积分的计算方法与敛散性判别方法。一、无穷积分定义:设函数在上有定义,并且对任意b,在a,b上可积,如果当时,极限存在,那么就称此极限为函数在上的无穷积分。记作:.例1 (1) 讨论积分 , , 的敛散性 .(2) 计算积分 . 例 2 讨论以下积分的敛散性 :(1)
14、60; (2) .例3 讨论积分的敛散性 . 二、无穷积分的性质:(1) 在区间 上可积 , Const , 则函数在区间 上可积 , 且. (2) 和在区间 上可积 , 在区间 上可积 , 且 . 三、无界函数的积分瑕积分的定义: 以点为瑕点给出定义. 然后就点为瑕点、点为瑕点以及有多个瑕点的情况给出说明.例4 判断积分的敛散性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桥梁工程设计考题及答案
- 幼儿园数学智慧点滴试题及答案
- 家具设计中如何实现艺术性与功能性的结合试题及答案
- 盐湖提锂技术成本降低与产能快速扩张可行性研究报告
- 绿色环保产业发展资金申请报告:环保产业技术创新与产业化
- 电动汽车安全技术的现状与发展前景探讨试题及答案
- 新安全工程师施工安全考点试题及答案
- 未来科技背景下的大学物理考试试题及答案
- 2025特岗教师招聘教学能力测试题目及答案
- 2025南航招聘空姐面试试题及答案
- 上肢肘腕关节松动术
- 2024年3月昆明市高三语文三诊一模考试卷附答案解析
- (高清版)DZT 0419.3-2022 矿产资源潜力评价规范(1:250 000)第3部分:成矿规律研究
- 科学道德与学术规范知识试题及答案
- 将健康社区纳入社区发展规划
- 痛风科普讲座课件
- 心肌梗死的早期识别与紧急处理
- 地震监测技术在城市交通管理中的应用
- 国开【形考】《管理英语(3)》形成性考核1-8答案
- 2023学年完整公开课版用户思维
- 医院获得性肺炎的诊断与治疗
评论
0/150
提交评论