离散数学期末复习试题及答案(六)_第1页
离散数学期末复习试题及答案(六)_第2页
离散数学期末复习试题及答案(六)_第3页
离散数学期末复习试题及答案(六)_第4页
离散数学期末复习试题及答案(六)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 第六章 命题逻辑基础1 设P表示命题“天下雪”,Q表示命题“我将去镇上”、R表示命题“我有时间”。(1) 试以符号形式写出下列命题: (a)如果天不下雪和我有时间,那么我将去镇上。 (b) 我将去镇上,仅当我有时间。 (c) 天下雪,那么我不去镇上。 (2) 用中文写出下列命题: (a) 当且仅当天不下雪,且我有时间,我将去镇上。 (b) 我有时间且去镇上。 (c) 我若去镇上,说明我有时间,若我有时间就去镇上。 (d) 我有时间或我去镇上,二者都不会发生。 试用符号形式写出下列命题: (1) 或者你没有给我写信,或者它在途中丢失了。 P :你给我写信,Q : 信丢失。 (2) 如果张三和李

2、四都不去,他就去。 P:张三去 Q:李四去 R:他去 (3) 我们不能既划船又跑步。 P :划船 Q:跑步 (4) 如果你来了,那么他唱不唱歌将看你是否 伴奏而定。 P :你来了 Q :他唱歌 R :你伴奏 3. 构造下列公式的真值表 (1) PQTTTTTTFFFTFTTTFFFTFT (2) PQR原式TTTTTTFTFTTFFTTFTFTFTFTTFTFTFFFTTFTFFTTTTTFTFFTFFTFTFFFFTFFTTFFFFFFFFTFF (3) PQR原式TTTFTTFTFTTFTTFTFTTFTFTFFFTTFFTTFTFTFTTFTTFTFFTFTTFFFTFFTFFFFTFF

3、FFTFFFTF (4) PQR原式TTTFFFFTTTTTTFFFTFTFFTTFTFTFTTTFFTFFFTTTTFFTFTTTFFFFTTTFTFTFTFFTTTFFTTTFFFTFFFFFTTTFFTFT4下列公式中哪些是永真式?哪些是永假式? 永真永真 非永真也非永假,因为双条件号二边没有任何联系。 永真5证明下列等价关系 证明下列蕴涵关系式而不用构造真值表。 7. 只用联结词写出下列公式的等价式:(答案不唯一)8. 证明是全功能联结词集合,而都不是全功能联结词集合。由Ø,Ú全功能,PÚQÛØp®Q 知道Ø,

4、74; 是全功能的。而Ú,Ù不是全功能的。若P,Q 二个变元用联结词可形成16个彼此不等价的命题公式,才是全功能的,而 P,Q的任意Ú,Ù联结仍只有P,Q,PÚQ,PÙQ这4个公式。Ú就更不可能全功能了。且Ø也不是全功能的,只有构成P,Q,ØP,ØQ,4个公式。9.仅用表达仅用表达。1) P®(ØP®Q)ÛTÛPÚØPÛØ(ØPÙP)ÛØP­PÛ(

5、P­P)­P P¯QÛØ(PÚQ)ÛØPÙØQÛØ(ØP­ØQ)ÛØ(P­P)­(Q­Q) ÛØ(P­P)­(Q­Q)­(P­P)­(Q­Q) 2) P®(ØP®Q)ÛTÛPÚØPÛØ(P¯(P¯P)Û(P¯(P¯P)¯(P¯(P¯P) P­QÛØ(PÙQ)ÛØPÚØQÛØ(ØP¯ØQ)ÛØ(P¯P)¯(Q¯Q)Û(P¯P)¯(Q¯Q)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论