冲压类外文翻译、中英文翻译冲压模具设计讲解学习_第1页
冲压类外文翻译、中英文翻译冲压模具设计讲解学习_第2页
冲压类外文翻译、中英文翻译冲压模具设计讲解学习_第3页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、附件1:外文资料翻译译文冲压模具设计对于汽车行业与电子行业,各种各样的板料零件都是有各种不同的成型工艺所 生产出来的,这些均可以列入一般种类“板料成形”的范畴。板料成形(也称为冲 压或压力成形)经常在厂区面积非常大的公司中进行。如果自己没有去这些大公司访问,没有站在巨大的机器旁,没有感受到地面的 震颤,没有看巨大型的机器人的手臂吧零件从一个机器移动到另一个机器,那么厂 区的范围与价值真是难以想象的。当然,一盘录像带或一部电视专题片不能反映出 汽车冲压流水线的宏大规模。站在这样的流水线旁观看的另一个因素是观看大量的 汽车板类零件被进行不同类型的板料成形加工。落料是简单的剪切完成的,然后进 行不同

2、类型的加工,诸如:弯曲、拉深、拉延、切断、剪切等,每一种情况均要求 特殊的、专门的模具。描述而且还有大量后续的加工工艺,在每一种情况下,均可以通过诸如拉深、拉延 与弯曲等工艺不同的成形方法得到所希望的得到的形状。根据板料平面的各种各样 的受应力状态的小板单元体所可以考虑到的变形情形描述三种成形,原理图 1 的是一个简单的从圆坯料拉深成一个圆柱水杯的成形过程。冲图1板料成形一个简单的水杯拉深是从凸缘型坯料考虑的,即通过模具上冲头的向下作用使材料被水平拉 深。一个凸缘板料上的单元体在半径方向上被限定,而板厚保持几乎不变。板料成 形的原理如图2所示。拉延通常是用来描述在板料平面上的两个互相垂直的方向

3、被拉长的板料的单 元体的变形原理的术语。拉延的一种特殊形式,可以在大多数成形加工中遇到,即 平面张力拉延。在这种情况下,一个板料的单元体仅在一个方向上进行拉延,在拉 长的方向上宽度没有发生变化,但是在厚度上有明确的变化,即变薄。图2板料成形原理弯曲时当板料经过冲模,即冲头半径加工成形时所观察到的变形原理,因此在 定向的方向上受到改变,这种变形式一个平面张力拉长与收缩的典型实例。在一个压力机冲程中用于在一块板料上冲出一个或多个孔的一个完整的冲压 模具可以归类即制造商标准化为一个单工序冲孔模具,如图3所示。图3典型的单工序冲孔模具1 下模座2、5导套3 凹模4 导杆6弹压卸料板7 凸模8 托板9

4、凸模护套10 扇形块11 固定板12 凸模固定板13 垫块15 阶梯螺钉16 上模座17 模柄 任何一个完整的冲压模具都是有一副(或多副的组合)用于冲制工作的(冲压) 零件组成,包括:所有的支撑件部分与模具的工作部分零件,即构成一副冲模。冲 压(术语)通常将完整压制工具的凹模(母模)部分定义为模具。导杆,或导柱,是安装在下模座上的。上模座则安装有用于导杆滑动的导套, 分别装有导套与导杆的上模座与下模座组合成为木架。模架有许多规格与结构设计 用于商业销售。安装在上模座上的凸模固定装置固定两个凸模(模具中的突出部分),这两个圆形凸模则通过插入在卸料板上的导套进行导向。套筒,或凸模护套,是用来保护

5、冲头,以免在冲压过程中被卡住。在冲穿工件材料后,两个冲头便进入到凹模一定 距离。凹模(母模)部分,即凹模,通常是由插入模具体内的两个模具导套组成的。因为冲头的直径是被冲孔的直径所要求的,所以有一定间隙的凹模直径是大于冲头 直径的。由于工件材料坯料或工件在冲制回程时与冲头附连在一起,所以把材料从冲头上剥离是必需的。弹压卸料板则保持冲头在冲制工件回程时缩回,使工件与工件剥 离。一个冲制的工件通常是留在漏料槽内的,漏料槽是由包含整个零件外轮廓的平板组成。模座是由销钉支撑板以及其他的滑块下行程时定位的挡料块等定位的。弯曲时一种最常见的成形工序。当我们仅将目光移至汽车或电器上的部件,或一个剪纸机或档案柜

6、上时,就会发现许多零件都是由弯曲成形的。弯曲不仅可以用来成形法兰、接头、波纹,也可以提高零件的强度(通过增加零件的惯性矩)弯曲容许范也疔曲角材料缩进1图4弯曲术语疔曲弯曲中所用的术语,如图4所示,应该注意的是,在弯曲中材料的外纤维是处 于拉应力状态,而材料的内纤维则处于压应力状态。由于泊松比原因,在外部区域 的零件(弯曲长度L )是小于原始宽度,处于内部区域的则比原始宽度大。这种现 象可在弯曲一个矩形的橡胶板擦时容易观察到的。最小弯曲半径对于不同的金属是变化的。一般而言,各种退火的金属板在没有断裂或变弱的前提下,可以弯曲成一个等同金属板厚的半径。随着R/T比值的减少(弯曲半径对厚度的比值变小)

7、,外纤维的拉应力增加,材料最终断裂(参见图 5)。疋纵気:1 h >图5泊松效应不同材料的最小弯曲半径参考表 1他通常是按照不同板厚来表示的,诸如:2T, 3T, 4T 等。表1在室温状态下各种材料的最小弯曲半径材料状态软硬铝合金06T钕青铜合金,钕合金04T黄铜,低铅02T镁5T13T钢奥氏体不锈钢0.5T6T低碳钢,低合金钢,高强度铅合金0.5T4T钛0.7T3T钛合金2.6T4T注:T材料厚度。弯曲容许范围,是指弯曲中的中性线(层)的长度,用来确定弯曲零件的坯料 长度。然而,中性线(层)的位置是哟弯曲角度(正如在材料力学课本中所描述) 来决定的。弯曲容许范围(Lb)的近似的公式为:

8、Lb= aR+kT)式中:Lb弯曲容许范围,毫米;a弯曲角度(弧度),度;T金属板厚,毫米;R弯曲内层半径,毫米;k当半径Rv 2T时为0.33,当半径 R>2T时为0.50。弯曲方式通常用于冲压模具。金属钢板或带料,由V形支撑,参见图6 (a)在楔形冲头的冲压力作用下进入 V形模具内弹簧加载压花销和零件之间的摩擦将 会防止或减少零件在弯曲期间的边缘滑移。棱边弯曲,参见图6 (b)是悬臂横梁式加载方式,弯曲冲头对相对支撑的凹模 上的金属施加弯曲力。弯曲轴线是与弯曲模具的棱边相平行的。在冲头接触工件之 前,为了防止冲头向下行程的位移,工件则被一个弹性加载垫片加紧模具体上。.rDll(a&l

9、t; +形模卩 b)滑触式模具图6弯曲方式弯曲力的大小是可以通过对一根矩形横梁的简单弯曲的工艺过程的确定来估算。在此情况下的弯曲力是材料强度的函数,此弯曲力的计算式为:p=klsT/w式中:P弯曲力,吨(对于米制使用单位,吨乘以8.896数值以得到千牛顿单位);K模具开启系数:16倍材料厚度(16T)时的开启系数为1.20,8倍 材料厚度(8T)时的开启系数为1.33;L零件长度,英寸;S极限张力强度,吨/平方英寸;WV或U形模具的宽度,英寸;T材料厚度,英寸。对于U形弯曲(槽形弯曲),弯曲力大约是V形弯曲所需要的弯曲压力的两倍, 棱边弯曲则大约是V形弯曲所需要的弯曲压力的1/2。回弹。所有金

10、属材料均有一个固定的弹性模量,随之而来的是塑性变形,当施 加在材料上的弯曲力消除时就会有一些弹性恢复(见图7)。在弯曲过程中这种恢复称为回弹。一般而言,这样的回弹在0.5。5°之间变化,取决于固定的弹性模量、 弯曲方式、模具间隙等。磷青铜的回弹则在10°15°之间。图7弯曲中的回弹减少或消除在弯曲工序中回弹方法可以根据下列工艺方法进行,如图8所示,在弯曲模具中产生的零件也可以通过等同回弹角度弯曲模上挖凹模或弹性缓冲式 弯曲模而被过度弯曲来减少或消除回弹。p* LfiiUlllLT图8减少或消除回弹的方法从应用角度来说,有许多类型的压力机,诸如:闭式双点偏心轴单动机

11、械压力 机,冲压成形机,液压成形压力机,液压机,弯板机,三动式压力机,冲模回转压 力机,双点压力机,双边齿轮驱动压力机,双点单动压力机,台式压力机,切边压 力机,闭式单动(曲柄)压力机,肘杆式压力机,单点单动压力机,开式双柱可倾 压力机,开式压力机,四点式压力机,四曲柄压力机,飞轮式螺旋压力机,摩擦传 动螺旋压力机,闭式双点单动双曲柄压力机,摇臂式压力机螺旋式压力机和上传动 板料冲压自动压力机等。附件2:外文原文Stampi ng Die Desig nThe wide variety of sheet metal parts for both the automobile and elect

12、ronic in dustries is produced by nu merous forming processes that fall into the gen eric category of "sheet-metal forming". Sheet-metal forming ( also called stamping or pressing )is often carried out in large facilities hundreds of yards long.It is hard to imagine the scope and cost of th

13、ese facilities without visiting an automobile factory, standing next to the gigantic machines, feeling the floor vibrate, and watch ing heavy duty robotic man ipulators move the parts from one machi ne to ano ther. Certa inly, a videotape or televisi on special cannot convey the scale of today's

14、 automobile stamp ing lin es. Ano ther factor that one sees sta nding n ext to such lines is the nu mber of differe nt sheet-formi ng operati ons that automobile pan els go through. Bla nks are created by simple shearing, but from then on a wide variety of bending, drawing, stretching, cropp ing , a

15、nd trim ming takes place, each requiri ng a special, custom-made die.Despite this wide variety of sub-processes,in each case the desired shapes are achieved by the modes of deformati on known as draw ing, stretchi ng, and bending. The three modes can be illustrated by considering the deformation of

16、small sheet elements subjected to various states of stress in the pla ne of the sheet. Figure 1 con siders a simple forming process in which a cyli ndrical cup is produced from a circular bla nk.Figure 1 Sheet forming a simple cupDraw ing is observed in the bla nk flange as it is being draw n horiz

17、on tally through the die by the dow nward action of the pun ch. A sheet eleme nt in the flange is made to elon gate in the radial directi on and con tract in the circumfere ntial direct ion, the sheet thick ness remai ning approximately con sta nt Modes of sheet formi ng are show n in Figure 2.Figur

18、e2 Modes of sheet formingStretching is the term usually used to describe the deformation in which an element of sheet material is made to elon gate in two perpe ndicular direct ions in the sheet pla ne. A special form of stretching, which is encountered in most forming operations, is plane strain st

19、retchi ng. In this case, a sheet eleme nt is made to stretch in one directi on on ly, with no cha nge in dime nsion in the direct ion no rmal to the direct ion of elon gati on but a definite change in thickness, that is, thinning.Bending is the mode of deformation observed when the sheet material is

20、 made to go over a die or punch radius, thus suffering a change in orientation. The deformation is an example of pla ne stra in elon gati on and con tract ionA complete press tool for cutting a hole or multi-holes in sheet material at one stroke of the press as classified and standardized by a large

21、 manufacturer as a single-station pierc ing die is show n in Figure3.Any complete press tool, con sisti ng of a pair( or a comb in ati on of pars ) of mat ing member for produc ing pressworked (stmped parts, in cludi ng all support ing and actuat ing eleme nts of the tool, is a die. Pressworki ng te

22、rm ino logy com mon ly defi nes the female part of any complete press tool as a die.The guide pins, or posts, are moun ted in the lower shoe. The upper shoe contains bush ings which slide on the guide pins. The assembly of the lower and upper shoes with guide pins and bushi ngs is a die set. Die set

23、s in many sizes and desig ns are commercially available. The guide pins are show n in Figure 3.Figure3 Typical sin gle-stati on die for pierci ng hole1 Lower shoe 2,5 Guide bushi ngs 3 Cavity plate 4 Guid pin 6 Sprin g-loaded stripper 7 Punch 8 Support plate 9 Punch bush ing 10 Fan-shaped block 1 Fi

24、xed plate 12 Pun ch-holder plate 13- Backi ng plate 14 Spri ng 15 Steppi ng bolts16 Upper shoe 17- Sha nkA punch holder moun ted to the upper shoe holds two round pun ches (male members of the die) which are guided by bushings inserted in the stripper. A sleeve, or quill, en closes one punch to prev

25、e nt its buckli ng un der pressure from the ram of the press. After pen etrati on of the work material, the two pun ches en ter the die bush ings for a slight dista nee.The female member, or die, con sists of two die bush ings in serted in the die block. Si nee this press tool pun ches holes to the

26、diameters required, the diameters of the die bush ings are larger tha n those of the pun ches by the amount of cleara nee.Si nee the work material stock or workpiece can cling to a punch on the upstroke, it may be n ecessary to strip the material from the pun ch. Sprin g-loaded strippers hold the wo

27、rk material aga inst the die block un til the pun ches are withdraw n from the pun ched holes. A workpiece to be pierced is commonly held and located in a nest (Figure 2-3) composed of flat plates shaped to en circle the outside part con tours. Stock is positi oned in dies by pins, blocks, or other

28、types of stops for locat ing before the dow nstroke of the ram.Bending is one of the most com mon formi ng operati ons. We merely have to look at the comp onents in an automobile or an applia nce-or at a paper clip or a file cab in et-to appreciate how many parts are shaped by bending. Bending is us

29、ed not only to form flanges, seams, and corrugations but also to impart stiffness to the part ( by increasing its mome nt of in ertia ).The terminology used in bending is shown in Figure 4. Note that, in bending, the outer fibers of the material are in tension, while the inner fibers are in compress

30、i on. Because of the Poiss on's ratio, the width of the part (be nd len gth, L) in the outer regi on is smaller, and in the inner regi on is larger tha n the orig inal width. This phe nomenon may easily be observed by bending a recta ngular rubber eraser.Mi nimum bend radii vary for differe nt m

31、etals, gen erally, differe nt ann ealed metals can be bent to a radius equal to the thickness of the metal without cracking or weakening. As R/T decreases(the ratio of the bend radius to the thickness becomes smaller), the ten sile strain at the outer fiber in creases, and the material eve ntually c

32、racks(Figure 5).BendangleBend allowance Length of bend, £Setback7Bc el ansleFigure 4 Bending term ino logya | radius,/?Rolling directionElongated inclusions(stringers)Rolling directionNo cracks(a) Parallel with bending direction (b) Vertical with bending directionFigure5 Poiss on effectThe mini

33、mum bend radius for various materials is given in Table 1 and it is usually expressed in terms of the thick ness. such as 2 T, 3 T, 4T.Table 1 Minimum bend radius for various materials at room temperatureMaterialCon diti onSoftHardAlumi num alloys06TBeryllium copper04TBrass,low-leaded02TMagn esium5T

34、13TSteelsAuste nitic sta nl ess0.5T6TLow-carbo n,lowalloy,HSLA0.5T4TTitan ium0.7T3TTitanium alloys2.6T4TNote :Tthick ness of materialBend allowa nee as show n in Figure 4 is the len gth of the n eutral axis in the bend and is used to determine the blank length for a bent part. However, the position

35、of the n eutral axis depe nds on the radius and an gle of bend (as described in texts on meeha nics of materials).An approximate formula for the bend allowanee, Lb is given byLb=a (R十 kT)Where Lbbend allowa nee, in (mm).abend an gle, (radia ns) (deg).Tsheet thick ness, in (mm).Rin side radius of ben

36、d, in (mm).k0.33 whe n R is less than 2T and 0.50 whe n JR is more than 2T.Bend methods arc com monly used in press tool. Metal sheet or strip, supported by-V bockFigure 6(a),is forced by a wedge-shaped punch into the block. This method, termed V bending, produces a bend hav ing an in cluded an gle

37、which may be acute, obtuse, or 90°.Fricti on betwee n a spri ng-loaded kn urled pin in the vee die and the part will preve nt or reduce side creep of the part duri ng its bending.Edge bending Figure 6(b) is can tilever load ing of a beam. The bending punchforces the metal against the supporting

38、 die. The bend axis is parallel to the edge of the die. The workpiece is clamped to the die block by a spri ng-loaded pad before the punch con tacts the workpiece to preve nt its moveme nt duri ng dow nward travel of the pun ch.Diei'丨11V1Punch(a) V die(b) Wiping dieFigure 6 Bending methodsBendin

39、g Force can be estimated by assu ming the process of simple bending of a rectangular beam. The bending force in that case is a function of the strength of the material. The calculation of bending force is as follows:2p=klst2/wWhere P-bending force, tons (for metric usage, multiply number of tons by

40、8.896 to obta in kil on ewt on s).Kdie ope ning factor: 1.20 for a die ope ning of 16 times metal thick ness,1.33 for an ope ning of 8 times metal thick ness.Llen gth of part, in.Sultimate ten sile stre ngth, tons per square in.Wwidth of V or U die, i n.Tmetal thick ness, in.For U bending (channel b

41、ending) pressureswill be approximately twice those required for V bending, edge bending requires about one-half those needed for V bending.Springback in that all materials have a finite modulus of elasticity, plastic deformation is followed, when bending pressure on metal is removed, by some elastic recovery

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论