大工秋《自动控制原理》辅导资料_第1页
大工秋《自动控制原理》辅导资料_第2页
大工秋《自动控制原理》辅导资料_第3页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、自动控制原理辅导资料二主 题:控制系统数学模型的建立的辅导文章控制系统微分方程的建立、 传递函数学习时间 :2014 年 10 月 6 日 -10 月 12 日内 容 :我们这周主要学习课件第 2 章控制系统数学模型的建立的部分内容。 希望通 过下面的内容能使同学们加深对控制系统数学模型的相关知识的理解。一、概述(了解)系统的数学模型是描述系统各变量之间关系的数学表达式。 我们对控制系统 的研究就是从数学模型着手, 分析系统的性能, 并根据性能指标的要求, 进行控 制系统的综合校正。控制系统的数学模型有动态模型和静态模型之分。动态模型:描述系统动态过程的数学表达式,如微分方程、偏微分方程、差

2、分方程等。静态模型:在变量的各阶导数为零的条件下, 描述系统各变量之间关系的数 学表达式。建立系统的数学模型主要有两条途径: 1理论推导法:通过系统本身机理(物理、化学规律)分析确定模型结构 和参数,推导出系统的数学模型。2. 实验测试法: 根据对系统的观察, 通过测量所得到的大量输入、 输出数据, 推断出被测系统的数学模型。、控制系统数学模型的建立(重点了解)控制系统输入输出之间的动态特性可由微分方程式来描述,而微分方程式就是系统的一种数学模型,建立系统微分方程式的一般步骤:1. 确定输入变量和输出变量;2. 根据物理或化学定律,列出系统(或元件)的原始方程式;3. 找出中间变量与其他因素的

3、关系式;4. 消去中间变量,得到输入输出关系方程式;5. 若所求输入输出关系为非线性方程,则应进行线性化;6. 标准化,将输入项及各阶导数放在方程的右边,将输出项及各阶导数放到 方程的左边,然后按降幕的顺序排列;建立系统微分方程式的举例:元部件微分方程变量说明R-L-C电路2d Uc(t)duc(t)丄(t)F(t)= L/RT1T2c+ T2 + UcdtdtT2 = RC弹簧-质量-阻尼器系2TM2d y(tTBdy(ty(t)1= -f(t)TdtdtKcM统2_ MIm K电枢控制的直流电d2。 Tajf “ =1 UaTRaJ1 ma m dt2dtKeKeKm动机TaTm dM L

4、 Tm-M LLJdtJTa亠Ra磁场控制的直流电动机T T d 国T dtCTfTm+国=KdUfdtdtTf =Lf/RfTm = J / BKd = Ki /Rf B电动机转速控制系统T Td2国丄tdB丄"丄TaTm2 +Tm+(1+K购dtdtKaTaTm dM l J 一一ur 一MlKeJdtJK= KaKt/Ke热力系统T 瞠+ (QCpR+1)0 =附 dtp日=% -日iT = RC流体过程型+巴睛=%dt SS对于一个线性系统,设它的输出为c(t),输入为r(t),则系统微分方程式的般形式如下:ndtnn -1d cai -1 dtn4mm 4de 丄,d r

5、丄,d r04%cm ' bimi 'dtdt dt bm芈 bmrdt(2-1)式中,q(i =1,2,., n),bj (j =1,2,., m)如果是时间的函数,则系统称为线性时变系统;如果为常数,则系统称为线性定常系统。对于实际物理系统,由于存在惯性等特性,所以输出端的导数阶数总是大于 或等于输入端的导数阶数,故有nm,而大多数系统nm、传递函数(重点掌握)控制系统的微分方程,是在时域描述系统动态性能的数学模型。 在给定外作 用及初始条件下,求解微分方程可以得到系统的输出响应。1. 传递函数的概念1 )传递函数:对线性定常微分方程进行拉普拉斯变换,可以得到系统在复 数域

6、的数学模型,称其为传递函数。它不仅可以表征系统的动态特性, 而且可以 研究系统的结构或参数变化对系统性能的影响。2) 控制系统的零初始条件:有两方面的含义,一是指输入作用是在 t=0以 后才作用于系统的,因此,系统输入量及其各阶导数在 t=0时的值均为零;二是 指系统在输入作用加入前是相对静止的,因此,系统输出量及其各阶导数在 t=0 时的值也为零。2. 传递函数的性质线性定常系统的传递函数为:(2-2)G(s)二 C(s)_ b°sm bsmJl . bm_s bm _ M (s) R(s)sn aS' . anJls anD(s)式中,M (s)为传递函数的分子多项式,M

7、 (s)二bosm - bsm' - . bms bm ;D(s)为传递函数的分母多项式,D(s) -sn aV - . - anjS an。1)传递函数是复变量s的有理真分式函数。j ,其中二为实部,j -为虚部。分子的阶数m般低于或等于分母的阶数n,且所有系数均 为实数。m空n ,这是因为物理系统必然具有惯性,而且能源又是有限的 缘故;各系数均为实数,是因为它们都是系统部件参数的函数,而部件 的参数只能是实数。2) 传递函数只取决于系统和部件的结构和参数,与外作用及初始条件 无关。3) 一定的传递函数有一定的零点、极点分布图与之对应,因此传递函 数的零点、极点分布图也表征了系统的动

8、态性能。4) 若令式(2-2)中s=0,贝G(0)二bm(2-3)anG(0)称为传递系数(或静态放大系数)。5) 传递函数只能表示输入与输出的函数关系,至于系统中的中间变量 无法反映出来。6) 一个传递函数只能表示一个输入对一个输出的函数关系,如果是多 输入多输出系统,则需要用传递函数阵来描述。3. 典型环节及其传递函数控制系统是由若干元件或部件有机组合而成的。 从形式和结构上看,有各种 各样不同的部件,但从动态性能或数学模型来看,却可分成为数不多的基本环节, 也就是典型环节。不管元件或部件是机械式、电气式或液压式等,只要它们的数 学模型一样,它们就是同一种环节。1. 比例环节比例环节的传递

9、函数为G(s) = K(2-4)式中,K为一常值。这表明,比例环节的输出量与输入量成正比,不失真也 不延滞,所以比例环节又称为放大环节或无惯性环节。2. 惯性环节惯性环节的传递函数为1G(s) (2-5)Ts+1式中,T为惯性环节的时间常数。当惯性环节的输入量为单位阶跃函数时,该环节的输出量将按照指数曲线上 升,在经过3个T时,响应曲线达到稳态值的 95%,或经过4个T时,响应曲 线达到稳态值的98%,即输出响应具有惯性,时间常数T越大惯性越大,如图1所示。RC电路、RL电路、直流电动机电枢回路都可看作惯性环节I098VI(a) RC电路(b)单位阶跃响应曲线图1惯性环节3. 积分环节积分环节

10、的传递函数是:1G(s) ( 2-6)Ts当积分环节的输入信号为单位阶跃函数时,贝U输出为t/T ,它随着时间直线 增长,如图2所示。直线的增长速度由1/T决定,即T越小,上升越快。当输入突然除去时,积分停止,输出维持不变,故有记忆功能。对于理想的积分环节, 只要有输入信号存在,不管多大,输出总要不断上升,直至无限。当然,对于实际部件,由于能量有限、饱和限制等,输出是不可能达到无限的。1图2积分环节的单位阶跃响应曲线4. 微分环节理想微分环节的传递函数为:G(s)=Ts( 2-7)式中,T为微分时间常数。在实际系统中,微分环节常带有惯性,它的传递函数为:G(s)冬(2-8)T2s +1式(2-

11、8)由理想微分环节和惯性环节组成。5. 比例+微分环节比例+微分环节的传递函数为:G(s) = Kc(1 Ts)( 2-9)式中,Kc为比例系数。具有比例+微分环节特性的实际例子有无源电路和有源电路,如图3所示。图3所示无源电路的传递函数为:G(s) =1 : Ts 1:-Ts 1(2-10)為。当、比较大时,上式就可看成是比例+微分环节。©十O =(a)无源电路(b)有源电路图3比例+微分环节6. 振荡环节该环节包含两个储能元件,在动态过程中两个储能元件进行能量交换它的传递函数为:G(s)二(2-11)S2 2n S n2式中,7. 延滞环节在实际系统中经常会遇到这样一种典型环节,

12、当输入信号r(t)加入后,该环节的输出c(t)要隔一定的时间后才能复现输入信号,如图5所示。在0 : t - 内,输出为零,称为延滞时间,这种环节称为延滞环节,具有延滞环节的系统称为延滞系统(b)输出信号图5延滞环节延滞环节的传递函数为G(s) =e_s(2-12)般地,一个以上是线性定常系统中按数学模型区分的几个最基本的环节系统是由若干个典型环节经过连接有机地组合而成。四、典型例题解析1. 系统中如果有 (),对系统的稳定性不利。A.惯性环节B.积分环节C. 振荡环节D. 延滞环节答案:D2. 同一个物理系统,可以用不同的数学模型来表达。 ( )答案:对3. 自适应控制属于经典控制理论的研究课题? (辅导资料一思考题答案 )答案:错,自适应控制属于现代控制理论的研究课题五、本周需要同学掌握的重点内容为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论