




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、电机控制技术的研究(作者:)()指导教师:【摘要】介绍了电力电子技术的发展过程,剖析了运动控制器中应用的各种电子技术。结合电机技术和微控制器技术研究现状,分析了电机运动控制领域内的最新进展和发展趋势。【关键词】电力电子技术 电机技术 微控制器 电机运动控制Motor Control Technology Research Author: Zhang Xiaowen(Grade10 Class2) Electronic and Information Engineering,Class electronic Information Engineering,Major electronic and
2、 Information Engineering,Ankang University,Ankang 725000,Shaanxi)Directed by LvfangxingAbstract:Introduces the power electronic technology development process,analysis of the motion controller controller in the application of the various electronic technology.A combination of electrical technology a
3、nd micro controller technology research,analysis of the motor motion control in the field of the lastest progress and developing trend.Key words:Power electronic technology , Electric motor technology , Micro controller , Motor control 一 、引言电机是把电能转换成机械能的设备,它在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业领域中都有着广泛的应
4、用。随着现代电力电子技术的飞速发展,现代电机控制技术正朝着小型化和智能化的方向发展。电机的运行及特性的控制都是电机控制技术的研究重点,其中,最主要的是对电动机速度的控制。随着微电子技术和电力电子技术的快速发展,以电子控制为电机控制的主要形式,已慢慢发展成为一门以电机为载体,利用高新技术来改造传统的电机技术的主要方式。但是相比较国外的控制器,国内生产的控制器的配套设备相对缺乏,大大制约了我国电机控制器的发展。二、电机控制技术的研究 1.面装式永磁同步电机电流矢量直接控制技术 (1)永磁同步电机数学模型图1为永磁同步电机空间矢量图。忽略电机铁心饱和,不计涡流和磁滞损耗,假设电机电流为对称的三相正弦
5、波电流,那么电机数学模型为式中:Ud和Uq为d-q轴同步旋转坐标系下定子电压分量;和为定子磁链分量;id和iq为d轴和q轴定子电流分量;为转子电角速度;Ld和Lq分别为直轴同步电感和交轴同步电感;R为定子绕组电阻:为与定子绕组交链的转子永磁体磁链;P为转子极对数;为转矩角;为负载角。图1. 磁同步电机空间矢量图(2)PMSM电流矢量直接控制技术 面装式永磁同步电机定子电压矢量方程为 为简化计算,忽略定子电阻的影响,有可表示为 因此,通过选择合适的空间电压矢量,可以像直接转矩控制中改变磁链的运动轨迹那样,改变电流的运动轨迹,在稳态下,将电流矢量矢端的轨迹控制为以蚓为半径的圆,称其为“稳态电流圆”
6、。实际上,电机转矩的动态调节过程是在不同稳态电流圆间相互切换的过程。图2为SPMSM电流矢量直接控制框图,转矩给定由外部转速环控制器给定或直接给定,然后除以转矩系数得到期望的电流幅值图2 PMSM电流矢量直接控制框图(3)开关表分析低速时(接近零速),运动电动势较小 式中:刀为采样时刻;r为采样周期。由此可得低速时在一个采样周期内电流矢量的运动趋势如图3(a)所示。可见,在一个控制周期内,电流矢量的运动方向与所加电压矢量的运动方向相同,电流矢量的运动速度在6个非零电压矢量作用时也相同,这与直接转矩控制时磁链矢量的运动情形类似。 a低速b高速图3 典型的电流轨迹运动趋势示意图(4)仿真结果基于上
7、述控制策略,在MatlabSimulink下建立了面装式永磁同步电机电流矢量直接控制系统模型,系统仿真结构如图4所示。电机参数如下:额定电压:300 V;额定转速:2 000rrain;额定转矩:8Nm;定子电阻:09585Q;d轴电感:525mH;g轴电感:525 mH;永磁体磁链:0182 7 Wb:转动惯量:6329x10-4 kgm2;极对数:4。仿真中采样时间取为40s,电流矢量幅值滞环比较器的宽度取06 A,转矩角滞环比较器的宽度取10。,设定转子磁链初始位置为吨2。图7为电机转矩动态响应特性曲线,粗实线为转矩给定,细实线为实际输出转矩,在l ms时刻,转矩给定由2 N·
8、m阶跃到8 Nm,大约经120 us,电机输出转矩迅速跟踪给定值,且无超调。可见,本文所提控制技术具有很高的转矩响应速度。图8和图9为永磁同步电机启动和稳态运行时电流、转矩、转速、转矩角、电流圆和磁链圆波形。图4 电机转矩动态响应a 电流、转矩、转速和转矩角波形图5 电机启动和稳态时波形2.电动车辆电机控制技术的应用与研究(1)电动车辆电机系统控制技术 电动汽车驱动电动机主要有:直流电动机(Dc),感应电动机(IM),永磁电动机(BDCM和PMsM)和开关磁阻电动机(SRM)。 当电动汽车减速或制动时,电机处在发电制动状态,给电池充电,实现机械能到电能的转换。在电动汽车上,由功率半导体器件构成
9、的PWM功率逆变器把蓄电池电源提供的直流电变换为频率和幅值都可以调节的交流电。三相感应电机逆变器的控制方法主要有v,f控制法、转差频率控制法、直接转矩控制法(DTC)和矢量控制法。其中,后两种控制方式目前处于主流的地位,这两种控制方法原理如下所述。 a. 直接转矩控制技术图6 直接转矩控制原理直接转矩控制的原理框图如上图所示。它是以转矩为中心来进行磁链、转矩的综合控制。和矢量控制不同,直接转矩控制不采用解耦的方式,从而在算法上不存在旋转坐标变换,简单地通过检测电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得差值,实现磁链和转矩的直接控制如图所示,为一种直接转
10、矩控制异步电机的框图。由于它省掉了矢量变换方式的坐标变换与计算和为解耦而简化异步电动机数学模型,没有通常的PwM脉宽调制信号发生器,所以它的控制结构简单、控制信号处理的物理概念明确、系统的转矩响应迅速且无超调,是一种具有高静、动态性能的交流调速控制方式。b. 矢量控制技术矢量控制基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体原理是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称
11、这种控制方式为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。此外,电动车的直流电机控制技术也是保障电动车性能的关键技术。电动汽车直流电机控制系统中的直流电机通常采用串励电机或他励电机。当电动汽车制动和减速时,一般采用再生制动。再生制动是利用直流电机可以从电动机运行状态平滑地转换到发电机运行状态这一特性。此时,电机转矩方向与转速方向相反,电机吸收机械能,把机械能转化为电能储存起来,可节省能量。直流电机的控制器采用的是斩波控制器(又称电压斩波器),它是直流电源和负载电机之间的一个周期性通断的开关控制装置,它的作用是通过改变供给
12、直流电机的电压,来控制电机的转速和转矩。(2)电动车辆电机控制技术的发展趋势 计算机技术的发展,电子技术的高速进步,高速、高集成度、低成本的微机专用芯片以及DsP等的问世及商品化,使全数字的控制系统成为可能。用软件代替硬件,除完成要求的控制功能外,还可以具有保护、故障监视、自诊断等其它功能。另外,为提高控制系统的可靠性和实用性,应使得改变控制策略、修正控制参数和模型也简单易行。全数字化是电动车控制技术的重要发展方向之一。随着电动车技术的成熟,相信有关发动机的控制技术将会取得更大的进步,而这也将对电动车工业的发展起到式等。l巨大的推动作用。3.无刷直流电机控制技术 各组成部分发展状况 (a)电机
13、本体无刷直流电机在电磁结构上和有刷直流电机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可靠性得以提高。无刷电机的发展与永磁材料的发展是分不的,基本上经历了铝镍钴,铁氧体磁性材料和钕铁硼三个发展阶段。 (b)电子换相电路控制电路:无刷直流电机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。目前,控制电路一般有专用集成电路、微处理器和数字信号处理器等三种组成形式。 驱动电路:驱动电路输出电功率,驱动电机的电枢绕组并受控于控制电路,它一般由大功率开关器件组成。随着电力电
14、子技术的飞速发展,出现了全控型功率开关器件。目前,全控型开关器件正在逐渐取代普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,同时电路组成也由功率管分立电路转成模块化集成电路。(c)转子位置检测电路永磁无刷电机是一闭环的机电一体化系统,它是通过转子磁极位置信号作为电子开关线路的换相信号。目前,磁敏式的霍尔位置传感器广泛应用于无刷直流电机中,另外还有光电式的位置传感器。为了适应无刷电机的进一步发展,无位置传感器应运而生;近年来,一种新型无位置传感器的无刷电机正处于研制之中。4. 交流电机控制技术(1)矢量控制技术的现状与展望目前,在矢量控制方面出现了许多新兴的技术,如磁通的快速控制、
15、参数辨识和调节器自整定、非线性自抗扰控制器以及矩阵式变换器技术等。在不久的将来,矢量采用高速电机控制专用DSP、嵌入式实时软件操作系统,开发更实用的转子磁场定向方法和精确的磁通观测器,使变频器获得高起动转矩、高过载能力,将是未来矢量控制技术的重要发展方向。(2)直接转矩控制技术的现状与展望直接转矩无差拍控制是基于离散化直接转矩控制系统提出来的一种控制方法。无差拍控制可以在一个控制周期内,完全消除定子磁链模值和电磁转矩的动、静态误差,消除由于使用滞环比较器产生的转矩脉动,使电机可以运行在极低速下,扩大了调速范围。转矩跟踪预测控制方法认为磁链模值已经被准确控制或只发生缓慢地变化,没有考虑磁链模值的
16、控制问题。随着现代科学技术的不断发展,直接转矩控制技术必将有所突破。一是交流调速向高频化方向发展,进一步提高控制性能,消除脉动,其中空间矢量脉宽调制和软关断技术又是重点。二是与智能控制相结合,使交流调速系统的性能有一个根本的提高。目前,直接转矩控制主要有以下几种新兴技术:(a) 模糊控制和神经网络控制: 模糊控制是根据人工控制规则组织控制规则决策表,采用人类思维中模糊量、控制量,由模糊推理导出。神经网络控制是人脑神经系统的某种简化抽象和模拟,由大量的简单的神经元互相连接形成的高度复杂的非线性系网络系统,具有逼近任意非线性函数的功能、高容错性、多输入输出特性,易用于多变量系统的控制。(b) 鲁棒控制和自抗扰控制器: 鲁棒控制是针对时间域或频率域来说的,一般假设过程动态特性的信息和它的变化范围。自抗扰控制器利用非线性结构克服经典PID 的缺陷,抵消和估计出异步电机高阶、非线性、强耦合的多变量系统中,同步旋转坐标系中定子电压方程存在的非线性耦合作用,使电机定子电流的转矩分量与励磁分量的相互影响,主要用于异步电机的非线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字化转型在农业电商中的实现试题及答案
- 数学应急考试试题及答案
- 家具材料选择的重要性研究试题及答案
- 黄埔数学面试真题及答案
- 短视频平台内容监管与2025年社会责任责任评价体系研究报告
- 施工现场电气安全隐患题目及答案
- 磁学实验考试题及答案
- 新能源汽车行业技术考试内容解析与试题答案
- 新能源汽车售后服务体系发展试题及答案
- 教师宝典考试题及答案
- 反有组织犯罪法学习PPT
- “问题解决型”课题QC活动程序及案例分析-课件
- 关爱自我,从心开始(主题班会)课件
- 食堂燃气安全使用检查表
- DB63-T 954-2020压力容器安全使用管理规范
- qw-zl03洁净室区环境监测作业指导书
- 不动产登记信息查询授权委托书
- 医院知情同意书模板
- 人工智能赋能金融保险
- 中国商业航天研究报告
- 《电力工程》PPT精品课程课件全册课件汇总
评论
0/150
提交评论