下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上导数的乘法与除法法则一、教学目标:1、了解两个函数的积、商的求导公式;2、会运用上述公式,求含有积、商综合运算的函数的导数;3、能运用导数的几何意义,求过曲线上一点的切线。二、教学重点:函数积、商导数公式的应用拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。教学难点:函数积、商导数公式三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:两个函数的和、差的求导公式1.导数的定义:设函数在处附近有定义,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数
2、在处的导数,记作,即2. 导数的几何意义:是曲线上点()处的切线的斜率因此,如果在点可导,则曲线在点()处的切线方程为3. 导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数, 4. 求函数的导数的一般方法:(1)求函数的改变量(2)求平均变化率(3)取极限,得导数 5. 常见函数的导数公式:;6. 两个函数和(差)的导数等于这两个函数导数的和(差),即(二)、探究新课设函数在处的导数为,。我们来求在处的导数。令,由于 知在处的导数值为。因此的导数为。一般地,若两个函数和的导数分别是和,我们有特别地,当时,有例1:求下列函数的导数:(1); (2); (3)。解:(1);(2);(3)。例2:求下列函数的导数:(1); (2)。解:(1);(2)。(三)、练习:课本练习1.(四)、课堂小结:1、了解两个函数的积、商的求导公式;2、会运用上述公式,求含有积、商综合运算的函数的导数;3、能运用导数的几何意义,求过曲线上一点的切线。4、法则:一般地,若两个函数和的导数分别是和,我们有特别地,当时,有(五)、作业:课本习题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六年级语文上册轻叩诗歌的大门教案人教新课标版(2025-2026学年)
- 部编版三年级语文下册《陶罐和铁罐》教案(2025-2026学年)
- 护理腹痛教案(2025-2026学年)
- 电工学第七版半导体下教例教案(2025-2026学年)
- 圆六年级上册数学教学目标思维导图知识梳理典例精讲北师大版教案(2025-2026学年)
- 高中物理第八章气体气体热现象的微观意义互动课堂新人教版选修教案(2025-2026学年)
- 尼曼半导体物理器件第八章市公开课省赛课教案(2025-2026学年)
- 数学教案同底数幂的除法(2025-2026学年)
- 医疗干股合作协议合同
- 医院放弃赔偿合同范本
- 校园零星维修服务 投标方案
- 年产9万吨苯酚丙酮车间氧化工段工艺设计
- 型糖尿病病程记录模板
- 古代汉语词的本义和引申义
- TDSHXH 002-2022 工业干冰规程
- HY/T 0306-2021产业用海面积控制指标
- GB/T 40851-2021食用调和油
- 常用危险化学品储存禁忌物配存表
- 加州旅馆原版吉他谱(完整版)
- 实用新型专利申请文件课件
- 三大音乐教学法之实践比较
评论
0/150
提交评论