青岛版圆柱的表面积教学设计_第1页
青岛版圆柱的表面积教学设计_第2页
青岛版圆柱的表面积教学设计_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆柱的表面积教学设计教学目标:1、掌握圆柱体侧面积和表面积的概念。2、 理解和掌握圆柱体侧面积、表面积的计算方法,能正确计算圆柱体的侧面积、表面积。3、形成圆柱体侧面积和表面积的空间观念。4、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。5、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。教学重点:掌握圆柱的侧面积和表面积的计算方法。教学难点:将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。教具准备: 圆柱体纸盒。多媒体课件。学具准备: 用彩纸包装好的圆柱形纸盒。教学过程:一、引入新课师:同学们,上节课我们已经认识了圆柱,谁来说说你对圆柱有

2、哪些了解?生交流师:看来,同学们对圆柱的特征掌握的非常不错。今天我们继续来研究圆柱。请看屏幕,这是手工课上一位同学用纸板做了一个圆柱形的纸筒,从图中你了解到了哪些信息?(一个圆柱底面直径是2 分米,高是3 分米)师:根据这些信息,你能提出什么数学问题?师:非常有价值的问题。那要求需要多少纸板实际上是求什么?对,也就是求这个圆柱的 表面积。那这节课我们就一起来研究圆柱的表面积。(板书课题)二、探究新知1、初步感知师:谁能说一下圆柱的表面积是指那些部分?师:同意吗?谁再来说说师:既然圆柱的表面积包括两个底面和一个侧面。那么,怎么求圆柱的表面积呢?师:同意吗?好,谁能像他这样再来说一说;好,你再来说

3、(找3 个同学说)师:来,大家一起说一遍,老师把它记录下来。圆柱的表面积=底面积*2+侧面积那乘 2 是什么意思?师: (指板书)同学们,从记录中可以看出,要求圆柱的表面积,只要求出了侧面积和底面积,表面积就可迎刃而解了,是吗?那在侧面积和底面积中,你觉得求谁的面积比较简单?大家都这么认为吗?为什么?师:对,圆的面积我们都会。同学们看,我们把求底面积转化成了求圆的面积,问题就变得简单了。这是解决问题非常好的思路。那能不能借助这种思路,想一想,怎么求圆柱的侧面积呢?(师:对,圆的面积我们都会。所以这节课我们的关键问题是求圆柱的侧面积,那么,怎么求圆柱的侧面积呢?我们知道圆柱的侧面是一个曲面,我们

4、能直接求出这个曲面的面积吗?那么我们能不能转化成我们已经学过的图形然后求面积呢?)师:有想法了吗?谁来说说。师:他说的有道理吗?想到把圆柱侧面展开成为长方形再进行研究,非常不错的方法。还有其他方法吗?他为大家指明了思考的方向,那侧面展开后能不能找到求侧面积的方法呢?实践才能出真知,下面,我们就借助课前准备的圆柱形的纸筒,小组一起合作研究,看看你们有什么发现,好吗?开始吧。温馨提示:1、圆柱侧面展开后,长方形的面积与圆柱的侧面积有什么关系?2、想一想,长方形的长和宽分别与圆柱的哪些部分有关系呢?(温馨提示:1、圆柱侧面展开后,长方形的面积与圆柱的侧面积有什么关系?2、想一想,长方形的长和宽分别与

5、圆柱的哪些部分有关系呢?3、 你能总结出圆柱的侧面积的公式吗?小组活动。)师:同学们研究完了吗?哪个小组先来交流你们的发现?师:听明白了吗?. 还有的同学不太明白,哪个组再来为大家讲一讲。师:这次听明白了吗。你们的发现和他们的一样吗?(师:同学们,你们能够借助已有的经验,巧妙地化曲为直,自己研究发现了求圆柱侧面积的方法,太了不起了。让我们再来重现一下同学们的研究过程。(播放微课视频1) 。 )师:同学们,刚刚你们将圆柱的侧面转化成长方形来研究它的面积,这就是我们数学中常用的转化思想,将不会的问题转化成我们已经会的知识从而解决问题。下面让我们再来重现一下同学们的研究过程。(播放微课视频1) 。圆

6、柱的侧面积等于什么,和大家的发现一样吗?现在请同学们闭上眼睛,把刚才的研究过程在头脑中再回放一遍。(在老师提示中进行)现在这个研究过程在你的头脑中是不是更清晰了。师:同学们,圆柱的侧面展开图除了是长方形,还可以是什么图形呢,我们接着来看(微 课视频2)此时,圆柱的侧面积等于什么?师:可见,不管圆柱的侧面展开图是什么图形,圆柱的侧面积都等于什么?底面周长*!师板书:侧面积二底面周长*高,师:那也就是说,只要知道了圆柱的底面周长和高,就可以求出侧面积了,是吧。(除了知道底面周长和高,可以求侧面积;还可以知道什么条件也可以求侧面积。师:同学很善于思考和总结,这是学习数学的好方法。)做两个关于圆柱的侧

7、面积的练习。(一个是已知圆柱的底面周长和高,求圆柱的侧面积。另 一个是已知圆柱的底面半径和圆柱的高,求圆柱的侧面积。)3、表面积师:侧面积的问题我们已经解决了,底面积我们也会求了,那现在你们能求圆柱的表面 积了吗?(会)下面就请同学们自己试着解决课前提出的那个问题吧,开始。师:我们请 为大家讲解一下他的做法。师:大家同意吗? *同学不仅做的正确,而且讲解的条理非常清晰,我们都应该向他学 习。三、拓展延伸1、同学们,其实在实际生活中,我们经常会遇到许多有关圆柱表面积的问题,大家一起来 看看,自己默读一下题目,这道题和我们刚刚解决的问题有什么不同?能解决吗?谁来列 个算式。同意吗?你能举出生活中这样类似的例子吗?师:我们在解决实际问题时,要灵活应用所学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论