高中物理匀加速直线运动知识点汇总_第1页
高中物理匀加速直线运动知识点汇总_第2页
高中物理匀加速直线运动知识点汇总_第3页
高中物理匀加速直线运动知识点汇总_第4页
高中物理匀加速直线运动知识点汇总_第5页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中物理匀加速直线运动知识点汇总一、机械运动一个物体相对于另一个物体的位置的改变,叫做机械运动,简称运动,它包括平动、转动和振动等运动形式.运动是绝对的,静止是相对的。宏观、微观物体都处于永恒的运动中。参考系在描述一个物体运动时,选作标准的物体(假定为不动的物体)描述一个物体是否运动,决定于它相对于所选的参考系的位置是否发生变化,由于所选的参考系并不是真正静止的,所以物体运动的描述只能是相对的。描述同一运动时,若以不同的物体作为参考系,描述的结果可能不同参考系的选取原则上是任意的,但是有时选运动物体作为参考系,可能会给问题的分析、求解带来简便,三、质点研究一个物体的运动时,如果物体的形状和大小

2、属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代替物体的有质量的点叫做质点.质点没有形状、大小,却具有物体的全部质量。质点是一个理想化的物理模型,实际并不存在,是为了使研究问题简化的一种科学抽象。把物体抽象成质点的条件是:(1)作平动的物体由于各点的运动情况相同,可以选物体任意一个点的运动来代表整个物体的运动,可 以当作质点处理。(2)物体各部分运动情况虽然不同,但它的大小、形状及转动等对我们研究的问题影响极小,可以忽略不计(如研究绕太阳公转的地球的运动,地球仍可看成质点).由此可见,质点并非一定是小物体,同样,小物体也不一定都能当

3、作质点.【平动的物体不一定都能看成质点,物体的形状与运动的距离相比不能忽略;转动的物体可能看成质点来处理研究绕太阳公转的地球的运动,也就是研究的问题不突出转动因素时。】【能否看成质点一看研究问题,二看物理的形状与研究物体的关系】【一个实际物体能否看成质点,决定于物体的尺寸与物体间距相比的相对大小】四、位置、位移与路程1、位置:质点的位置可以用坐标系中的一个点来表示,在一维、二维、三维坐标系中表示为s(x)、s (x,y)、s ( x, y, z)2、位移:【矢量】位移是表示质点位置的变化的物理量.用从初位置指向末位置的有向线段来表示,线段的长短表示位移 的大小,箭头的方向表示位移的方向。位移是

4、矢量,既有大小,又有方向。它的方向由初位置指向末位置.注意:位移的方向不一定是质点的运动方向。如:竖直上抛物体下落时,仍位于抛出点的上方;单位:m3、路程【标量】:路程是指质点所通过的实际轨迹的长度.路程是标量,只有大小,没有方向;路程和位移是有区别的: 一般地路程大于位移的大小,只有做直线运动的质点始终向着同一个方向运动时,位移的大小才等于路程.五、速度速度:表示质点的运动快慢和方向,是矢量。它的大小用位移和时间的比值定义,方向就是物体的运动方 向;轨迹是曲线,则为该点的切线方向。速率:在某一时刻物体速度的大小叫做速率,速率是标量.瞬时速度:由速度定义求出的速度实际上是平均速度,它表示运动物

5、体在某段时间内的平均快慢程度,它只能粗略地描述物体的运动快慢,要精确地描述运动快慢,就要知道物体在某个时刻(或经过某个位置)时运动的快慢,因此而引入瞬时速度的概念。瞬时速度的含义:运动物体在某一时刻(或经过某一位置)时的速度,叫做瞬时速度一位移 x平均速度:运动物体位移和所用时间的比值叫做平均速度。定义式:v =一时间t平均速率:平均速率等于路程与时间的比值。一 路程 s v = 二 时间t平均速度的大小不一定等于平均速率。(当物体做单向直线运动时,二者相等)1 一支队伍沿平直公路匀速前进,其速度的大小为V1,队伍全长为L. 一个通讯兵从队尾以速度 V2(V1小于V2)赶到队前然后立即原速返回

6、队尾。这个全过程中通讯兵通过的位移为。高中【解析】理解这类问题,能够做出简单的运动示意图。要注意到通讯兵做的是一个折返运动,以地面为参 考系来研究运动略显麻烦,这里我们选匀速运动的队伍作为参考系,这样队伍就是静止的,使运动变得就 简单了,以队伍为参考系,通信兵从队尾到队前的时间t1 =-L-,从队前至队尾的时间t2 = ,v21vlv2 v1则通信兵通过的路程 s=v2(t1+t2)= 2V2L2 ,通讯兵的位移即为队伍的位移 x = M(t1+t2)=2性v2 v V1V2 V V1六、加速度物理意义:描述速度变化快慢的物理量 (包括大小和方向的变化),速度矢端曲线的切线方向。大小定义:速度

7、的变化与所用时间的比值。定义式:a= =VV0 (即单位时间内速度的变化)a也叫做速度的变:tt化率。加速度是矢量:现象上与速度变化方向相同,本质上与质点所受合外力方向一致。在 v-t图像中斜 率表示的加速度。判断质点作加减速运动的方法:是加速度的方向与速度方向的比较,若同方向表示加速。若反方向表示减速。【速度增加加速度可能减小】七、匀变速直线运动基本公式两个基本公式(规律):v=v0+at (1)用匀变速直线运动的 v-t图像的面积代表位移这一思想,即可的12得出位移公式的表达式 x=v0t+at (2)及几个重要推论:2221、推论:由(1) (2)消去时间t即可得v -v0 = 2ax

8、(匀加速直线运动:a为正值 匀减速直线运动: a为负值)2、A B段中间时刻的瞬时速度:vt/2=v=-0-(这个结论运用非常广泛,知道某段位移的平均速度,2就相当于知道该段时间中点的平均速度)3、AB段位移中点的即时速度:vx/2;v vt/24、做匀变速直线运动的物体,在通过连续相等时间t内位移的增量为一定值:Ax = at25、初速为零的匀加速直线运动规律在1s末、2s末、3s末 ns末的速度比为 1:2: 3 n;在1s、2s、3sns内的位移之比为 12: 22: 32n2;在第1s内、第2s内、第3s内第ns内的位移之比为1: 3: 5(2 n-1);从静止开始通过连续相等位移所用

9、时间之比为1: 2 -1):於-处(/-J口)通过连续相等位移末速度比为1:短.屈& 6、匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动 .(先考虑减速至停的时间)。这种 逆向思维使得表达式变得简单明了。芍变速直线规律的应用例2 一质点由静止开始做匀加速直线运动,加速度大小为 a,经 OA时间t后立即做匀减速直线运动,加速度的大小为 a2,若再经过O1 B时间t恰能回到出发点,则 曰与a2之比是多少?物体返回出发点*1的速度v多大?C。到A是第一段,初速度为 0的匀加【解析】解法一:为了使运动更清晰,作出运动的示意图,如右图, 速运动,A到B再到C质点做的是一个加速度为 a2(方向

10、向左)不变的匀变速直线运动 (先减速,再加速),1.2规th右为正方向,对于 。到A设位移大小为x, x = a1t (1), vA =0:1 (2)2对于第二段A到B再到C全过程(要肯定这个折返的过程是一个匀变速运动,我们C的位移公式仍适用)这个过程位移的大小仍为x,设返回出发点的速度为vC ,则由-x = vAt-vC=vA-a2t (4)由(1) (2) (3) (4)彳导 a2 =3a1, vC =2vA =2a1t解法二:如右图所示,作出这个运动的 v-t图像,AOBC勺面积代表上图从出发点到最远点的距离,显然有 AOAB勺面积等于ABDC勺面积设图中EB对应的时间为nt (这样设运

11、算简单),则BD段对应的时间为高中由三角形的相似有AE _ EBDE - BD也就是vA =Vcnt(1-n)tn1 -n(1)再有AOAB勺面积等于ABDC勺面积有OBgE = BD_|DE即vA (t + nt) = vC(t nt)消去时间t,整理有 幺=上口(2)由(1) (2)得=上口解出n=1(3), vC 1 n1 - n 1 n3那么将(3)代入(1)得vC =2vA,由加速度的定义式a= 得,a1 =幺,-a2 =(-%) ,即可 二 ttt得到a2 = 3a1【点评】本题所有的物理量(矢量),均表示大小,代入公式应该注意其正负号。法一,应该明白对折返的匀变速直线运动全过程的

12、应用,这种方法用平均速度表示位移,也和容易得出vC =2vA,在这里留给大家拓展。法二,用到 v-t图像与坐标轴围成的面积代表位移,这一重要的物理思想;在 v-t图中设BE段 的时间,要用到聪明的设法,设为 nt这样t很容易消去,只剩系数的运算。匀变速直线规律的基本模型列3,如图,一质点在做匀加速直线运动,在通过 AB和BC段,位移 A 分别为X1, X2,所用时间分别为t1, t2。下面我们具体分析哪些量可以求。(1)求加速度a【解析】这里我们知道两端位移和对应的时间,易知这两段的平均速度,也就是中间时刻的瞬时速度,取 AB段中间时刻对应的位置为 D点,BC段中间时刻对应的位置为 E点。一

13、x1 ,八Vd Vab =(1)t1Ve VbcX 一(2)tDE = tDB . tBEt1 t2 ,0、(3)再由加速度的定义式t tDE(4),将(1) (2) (3)带入(4)即可求出加速度。(2)求 vA , Vb 和 Vc【解析】上面我们用一段位移的平均速度等于其中间时刻速度这一推论,求出了物体做匀速直线运动的加速度。图中这五个点,每两个点的时间间隔都可以求出,加速度他各点的速度即可求出。以求 A点的例子:由速度时间公式:Vd =Va+atAD即可求出Va ,同理可求出(3)求A点距运动起点的距离 X0A和时间10A【解析】如图,在A点前面补充运动起点 O, O点的速度为0,a,已

14、经求出,在借助以 D点的速度,其B点和C点的速度。A D B E C则由vA =at0A即可求出tOA ,由vA -0=2axoA即可求出xOA。,例4, 一辆静止的汽车从 A地到B地,先以加速度a1作匀加速直线运动;经过一段时间后,做匀速直线运B地。已知A地到B地的距动;最后以大小为a2的加速度作匀减速直线运动, 直至速度减为零时恰好到达 离为So则匀速运动的时间为多少时,汽车从 A地到B地所用时间最短,最短时间是多少?匀速运动时间为 0时,汽车从A地到B地所用时间最短。【解析】证明:当匀速时间为 0时,图中三角形 OAB1是其v-t图线,当匀速运动时间为 t1-t2时,梯形OCE助其v-t

15、图线,汽车运动的位移是一的面积,才可以说运动位移与第一种情形是定的,这个时候必须有三角形CAD勺面积等于平行四边形 DEFB样的,这个时候运动的总时间可以用是大于OB的。那么当匀速时间更长时我们可以用。的口 OR来代替运动的总时间,长,总时间越长。得证。如上图,质点的位移在数值上等于三角形面积OF的长来代替,明显 这也就是说匀速时间越S=1Vmt ,仇=中2t1(1)a2 =vmt -t1V(2) (1)和(2)相除消去Vm A可得t1a2ta a2a2tVm 三 at1 三 a1 -a1a2a1a2 ta1 a2故$=讥=1/1=11 .eaL= a对2可得益=伊亘S22 a1a2 2(a1

16、 a2)c1a2八、竖直上抛运动:(速度和时间的对称)分过程:上升过程匀减速直线运动,下落过程初速为0的匀加速直线运动.全过程:是初速度为 Vo加速度为-g的匀减速直线运动。2VV(1)上升取大局度h = (2)上升的时间:t上=(3)上升、下洛经过同一位置时的加速度相同,而速 2gg度等值反向(忽略阻力)(4)上升、下落经过同一段位移的时间相等。(忽略阻力)(5)从抛出到落回原位置时间:t=2v0 (忽略阻力)(6)适用全过程h = vot - - g t2 ; v= Vo-g t ;(注意对矢量的正、 g2负号的理解)(7)有空气阻力时上升时间与下降时间和无法与自由落体上升与下降时间和比较

17、(阻力大小如已知可以计算)多过程与全过程5,研究人员为检验某一产品的抗撞击能力,乘坐热气球并携带该产品竖直升空,当.热气球以10 m/s的速度匀速上升到某一高度时,研究人员从热气球上将产品自由释放,测得经11 s产品撞击到地面.不计产品所受的空气阻力,求产品的释放位置距地面的f高度.(g取10 m/s2)3一卜已【解析】解法一:全过程法,将产品的运动视为匀变速直线运动,根据题意作出运动的向1示意图。取向上为正方向,则对该竖直上抛运动,加速度为负,位移由于低于抛出点也为负,“.12-全过程列出方程 H =votgt 代入数据可得 H = -495mu 24由镇我耕根其烟拉*甘於a解法二:分阶段法

18、将产品的运动分为 At B和Bt Ct D两个阶段来处理,At B为竖直上抛运动(末速度为 0的匀减速直线运动,反过来看则为自由落体运动),Bt Ct D为自由落体运动,在 At B , tAB =% =1s , hAB =、C =1 gtAB (或 )=5m g2” 2g则tBD =11s_1s=10s, bt CT D阶段,由自由落体运动规律的故释放点的高度 H =hBD -hBC =495m1 一hBD -万gt2BD=500m ,九、实验规律:1、使用电磁打点计时器与电火花计时器区别电磁打点计时器(6V以下低压交流电源)、电火花计时器(220V交流电源)2、通过打点计时器在纸带上打点

19、(或照像法记录在底片上)来研究物体的运动规律3、实验中应挂合适的祛码(祛码过多速度过快,过少速度太慢)初速无论是否为零,只要是匀变速直线运动的质点 ,就具有下面两个很重要的特点:在连续相邻相等时间间隔内的位移之差为一常数;Ax=_aT2 (判断物体是否作匀变速运动的依据)中间时刻的瞬时速度等于这段时间的平均速度(运用V可快速求位移)【注意】:是判断物体是否作匀变速直线运动的方法。& = afXV0Vx xn 1 xn求 V 的方法 V = _Vt/2 =V = =一 =1nt2 t 2T求 a 方法: Ax = af xN 为一 xN=3 aT2 Xm Xn=( m-n) aT2(4)画出图线

20、根据各计数点的速度 ,图线的斜率等于a;4、识图方法:一轴、二线、三斜率、四面积、五截距、六交点探究匀变速直线运动实验:右图为打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O,然后每5个点取一个计数点 A R C D。(或相邻两计数点间有四个点未画出)测出相邻计 数点间白距离S1、S2、S3利用打下的纸带可以:求任一计数点对应的即时速度V:如Vc =s2 *s3 (其中记数周期:T=5X0.02s=0.1s )2T利用上图中任意相邻的两段位移求a:如a s3 ? T2利用“逐差法”求a: a _(S45+品一1-2)及1才|七二% * Jl/ *J

21、3 *-L9T2ABCD利用v-t图象求a:求出A、B、C D E、F各点的即时速度,画出如图的 v-t图线,图线的斜率就是加速度a。【注意】:点a.打点计时器打的点还是人为选取的计数点距离b.纸带的记录方式,相邻记数间的距离还是各点距第一个记数点的距离。周期c.时间间隔与选计数点的方式有关(50Hz,打点周期0.02s,常以打点的5个而僦祚为一个市时单位)即区分打点周期和记数周期。d.注意单位。一般为 cm实验研究 4、实验注意事1)电源电压与频率,2)实验前检查打点计时器的稳定性与清晰度,必要时调节指针高度和换复写纸,3)【开始释放小车时应使小车靠近打点计时器】,4)【先通电再释放车,车停

22、止时及时断开电源】。5)要防止钩码落地和小车与滑轮相撞,【当小车到达滑轮前及时用手按住】,6)【牵引小车的钩码个数适量】,(祛码过多速度过快,点太少;过少速度太慢,各段位移无太大差别),7)区别计时器打点与人为取点,8)多测几组数据以尽量减少误差,9)描点最好使用坐标纸追及相遇专题1 .相遇和追及问题的实质:研究的两物体能否在相同的时刻到达相同的空间位置的问题。如果两个追及物体满足v前v后则前后两个物体相距越来越远,v前丫后 则前后两个物体相距越来越近。那么速度相等就是我们讨论的的临界点。2 .画出物体运动的情景图,理清三大关系(1)时间关系:t先=+ +t0 (2)位移关系:X前=*后+X0

23、可以只要两个物体的位移满足就可以说这两个物体相遇,这也是相遇问题的依据,也是我们用位移公式列方程的依据。这两个关系是我问求解追及相遇问题最基本的依据,能够列出方程也就是位移关系(3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。3 .两种典型追及问题v(1)初速度大者(匀减速)追初速度小者(匀速)或者匀速追初速度小的匀加速我们举一个匀速追初速度小的匀加速的例子。如右图,做匀速直线运动的甲车,追做匀加速直线运动的乙车设初始二者相距X0。在共速之前0-t0这一段时间内,由于 v甲v乙和所以二者之间的距离越来越小,设三角形ABC的面积为S,

24、S的意义是,共速之前后车比前车 多走的距离。当SX时,(多走的没有相距的远即 vi=V2时,A末追上B,)则A、B永 不相遇,此时两者间有最小距离;当S = x0时,(多走的等于初始相距的距离即Vi=V2时,A恰好追上B,)则A、B相遇一次,也是避免相撞刚好追上 的临界条件;当 SAX0时,(多走的比相距的远即 vi=V2时,A已追上B) 则A、B相遇两次,且之后当两者速度相等时,两者间有最大距离。这种情况 最好能够作出v-t图像,明白后者比前者 多走的在图像中指的是哪一部分? (2)同地出发,速度小者(初速度为零的匀加速)追速度大者(匀速)当vi=v2时,A B距离最大;当两者位移相等时 ,

25、有Vi=2v2且A追上R 追上B所用的时间等于它们之间达到最大距离时间的两倍。例6,甲车以10 m/s的速度在平直的公路上匀速行驶,乙车以 4 m/s 的速度与甲车平行同向做匀速直线运动,甲车经过乙车旁边开始以0.5m/s2的加速度刹车,从甲车刹车开始计时,求:(1)乙车在追上甲车前, 两车相距的最大距离;(2)乙车追上甲车所用的 时间.【解析】解法一,图像法(1)清楚的理解这种题目我们可以做出v-t图像,如右图,由v乙=v甲at解得:t =12 s即到12s时二者共速,此时甲乙相距最 远,三角形ABC的面积代表共速前甲车比乙车多走的位移。c1,S逸BC =AX =X(104)X12 = 36

26、m即为两车相距的最大距离 . .v甲.(2)设甲车减速到零所需时间为ti,则有:ti = =20 s,如图12s-20s ,乙车比甲车多走的位移为三角形CDE的面积。C1S四DE=Ax2 =-x(20 -12)x4 =16m ,此时甲车已经停止,x乙车要想追上甲车还需再走x = Ax1 Ax2 =20m,这段位移用时t2 =5s 故,t总=t1 +t2=25sv乙解法二,公式法(1)当甲车速度减至等于乙车速度时两车的距离最大,设该减速过程经过的时间为t,则v乙=v甲一at解得:t = 12 s1 21236 m.此时甲乙间的距离为A x= v 甲t 2at v 乙t = 10X 12 m5x0.5x12 m4X12 m=(2)设甲车减速到零所需时间为t1,则有:t1 = v=20 s t1时间内:x甲t1 = 10X20 m= 100 ma22_ x 甲一x 乙 20_xzi=v乙t1 = 4X20 m= 80 m 此后乙车运动时间:12= s = 5 sv乙 4故乙车追上甲车需 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论