




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、齐次方程 第三节 第七章 一、齐次方程一、齐次方程形如)(ddxyxy的方程叫做齐次方程齐次方程 .令,xyu ,xuy 则代入原方程得,ddddxuxuxy)(dduxuxuxxuuud)(d两边积分, 得xxuuud)(d积分后再用xy代替 u, 便得原方程的通解.解法:分离变量: 例例1. 解微分方程.tanxyxyy解解:,xyu 令,uxuy则代入原方程得uuuxutan分离变量xxuuuddsincos两边积分xxuuuddsincos得,lnlnsinlnCxuxCu sin即故原方程的通解为xCxysin( 当 C = 0 时, y = 0 也是方程的解)( C 为任意常数 )
2、0C此处例例2. 解微分方程.0dd)2(22yxxyxy解解:,2dd2xyxyxy方程变形为,xyu 令则有22uuuxu分离变量xxuuudd2积分得,lnln1lnCxuuxxuuudd111即代回原变量得通解即Cuux )1(yCxyx)(说明说明: 显然 x = 0 , y = 0 , y = x 也是原方程的解, 但在(C 为任意常数)求解过程中丢失了. x由光的反射定律:可得 OMA = OAM = 例例3. 探照灯的聚光镜面是一张旋转曲面, 它的形状由)0()(:yxfyL解解: 将光源所在点取作坐标原点, 并设入射角 = 反射角xycotxyy22yxOMTMAPy能的要求
3、, 在其旋转轴 (x 轴)上一点O处发出的一切光线,从而 AO = OMOPAP xOy 坐标面上的一条曲线 L 绕 x 轴旋转而成 , 按聚光性而 AO 于是得微分方程 : xyy22yx yO经它反射后都与旋转轴平行. 求曲线 L 的方程.21ddyxyxyx, vyx 则,yxv 令21ddvyvyyvyvyxddddCyvvlnln)1(ln2积分得故有1222CvyCy, xvy代入得)2(22CxCy (抛物线)221)(vvCyCyvv21故反射镜面为旋转抛物面.于是方程化为(齐次方程) yxAO顶到底的距离为 h ,hdC82说明说明:)(222CxCy2,2dyhCx则将这时
4、旋转曲面方程为hdxhdzy1642222hd若已知反射镜面的底面直径为 d ,代入通解表达式得)0,(2C整理课件一阶线性微分方程 第四节 第七章 整理课件一、一阶线性微分方程一、一阶线性微分方程一阶线性微分方程标准形式:)()(ddxQyxPxy若 Q(x) 0, 0)(ddyxPxy若 Q(x) 0, 称为非齐次方程非齐次方程 .1. 解齐次方程分离变量xxPyyd)(d两边积分得CxxPylnd)(ln故通解为xxPCyd)(e称为齐次方程齐次方程 ;整理课件xxPCyd)(e对应齐次方程通解齐次方程通解非齐次方程特解xxPCd)(e2. 解非齐次方程)()(ddxQyxPxy用常数变
5、易法常数变易法:,e)()()(xxPxuxyd则xxPud)(e)(xPxxPud)(e)(xQ故原方程的通解xxQxxPxxPde)(ed)(d)(CxxQyxxPxxPde)(ed)(d)(y即即作变换xxPuxPd)(e)(xxPxQxud)(e)(ddCxxQuxxPde)(d)(两端积分得整理课件例例1. 解方程 .) 1(12dd25xxyxy解解: 先解,012ddxyxy即1d2dxxyy积分得,ln1ln2lnCxy即2) 1( xCy用常数变易法常数变易法求特解.,) 1()(2xxuy则) 1(2) 1(2 xuxuy代入非齐次方程得21) 1( xu解得Cxu23)
6、1(32故原方程通解为Cxxy232) 1(32) 1(令整理课件在闭合回路中, 所有支路上的电压降为 0例例2. 有一电路如图所示, ,sintEEm电动势为电阻 R 和电. )(tiLERQ解解: 列方程 .已知经过电阻 R 的电压降为R i 经过 L的电压降为tiLdd因此有,0ddiRtiLE即LtEiLRtimsindd初始条件: 00ti由回路电压定律:其中电源求电流感 L 都是常量,整理课件解方程:LtEiLRtimsindd00tiCxxQeyxxPxxPdd)(d)(e)(由初始条件: 00ti得222LRLECm)(ti tLRdetLEmsintLRmCtLtRLREe)
7、cossin(222ttLRdedC利用一阶线性方程解的公式可得LERQ整理课件tLRmLRLEtie)(222)cossin(222tLtRLREmtLRmLRLEtie)(222)sin(222tLREm暂态电流稳态电流则令,arctanRL因此所求电流函数为解的意义: LERQ整理课件),(yxfy 可降阶高阶微分方程 第五节)()(xfyn),(yyfy 第七章 整理课件一、一、)()(xfyn令,) 1( nyz)(ddnyxz则因此1d)(Cxxfz即1) 1(d)(Cxxfyn同理可得2)2(d Cxyn1d)(Cxxfxd xxfd)(依次通过 n 次积分, 可得含 n 个任意
8、常数的通解 ., )(xf21CxC型的微分方程型的微分方程 整理课件例例1. .cose2xyx 求解解解: 12dcoseCxxyx 12sine21Cxxxy2e41xy2e811121CC此处xsin21xC32CxCxcos21CxC整理课件tFO,00tx例例2. 质量为 m 的质点受力F 的作用沿 Ox 轴作直线运动,在开始时刻,)0(0FF随着时间的增大 , 此力 F 均匀地减直到 t = T 时 F(T) = 0 . 如果开始时质点在原点, 解解: 据题意有)(dd22tFtxm0dd0ttx)1(0TtFt = 0 时设力 F 仅是时间 t 的函数: F = F (t) .
9、 小,求质点的运动规律. 初速度为0, 且对方程两边积分, 得 )(tF)1(dd022TtmFtx0FT整理课件120)2(ddCTttmFtx利用初始条件, 01C得于是)2(dd20TttmFtx两边再积分得2320)62(CTttmFx再利用00tx, 02C得故所求质点运动规律为)3(2320TttmFx0dd0ttx整理课件),(yxfy 型的微分方程型的微分方程 设, )(xpy ,py 则原方程化为一阶方程),(pxfp 设其通解为),(1Cxp则得),(1Cxy再一次积分, 得原方程的通解21d),(CxCxy二、二、整理课件例例3. 求解yxyx 2)1(2,10 xy3
10、0 xy解解: ),(xpy 设,py 则代入方程得pxpx2)1(2分离变量)1(d2d2xxxpp积分得,ln)1(lnln12Cxp)1(21xCp即,3 0 xy利用, 31C得于是有)1(32xy两端再积分得233Cxxy利用,10 xy, 12C得133xxy因此所求特解为整理课件例例4. 绳索仅受重力作用而下垂,解解: 取坐标系如图. 考察最低点 A 到sg( : 密度, s :弧长)弧段重力大小按静力平衡条件, 有,cosHTsa1tanMsg)(gHa其中sgTsinyxyxd102a1故有211yay 设有一均匀, 柔软的绳索, 两端固定, 问该绳索的平衡状态是怎样的曲线
11、? 任意点M ( x, y ) 弧段的受力情况: T A 点受水平张力 HM 点受切向张力T两式相除得HAyxO整理课件211yya , aOA 设则得定解问题: , 0ayx0 0 xy),(xpy 令,ddxpy 则原方程化为pdxad1两端积分得)1(lnshAr2ppp,shAr1Cpax0 0 xy由, 01C得则有axysh两端积分得,ch2Cayax, 0ayx由02C得故所求绳索的形状为axaych)ee(2axaxa悬悬 链链 线线a21pMsgTHAyxO整理课件三、三、),(yyfy 型的微分方程型的微分方程 令),(ypy xpydd 则xyypddddyppdd故方程
12、化为),(ddpyfypp设其通解为),(1Cyp即得),(1Cyy分离变量后积分, 得原方程的通解21),(dCxCyy整理课件例例5. 求解.02 yyy代入方程得,0dd2 pyppyyyppdd即两端积分得,lnlnln1Cyp,1yCp 即yCy1(一阶线性齐次方程)故所求通解为xCCy1e2解解:),(ypy 设xpydd 则xyypddddyppdd整理课件M : 地球质量m : 物体质量例例6. 静止开始落向地面, (不计空气阻力). 解解: 如图所示选取坐标系. 则有定解问题:22ddtym2yMmk,0lyt00ty,dd)(tyyv设tvtydddd22则tyyvdddd
13、yvvdd代入方程得,dd2yyMkvv积分得122CyMkv一个离地面很高的物体, 受地球引力的作用由 yRlO求它落到地面时的速度和所需时间整理课件122CyMkv,1122lyMkv,ddtyv yyllMkv2即tdyylyMkld2两端积分得Mklt2,0lyt利用, 02C得因此有lylyylMkltarccos22lylyylarccos22C, 0000lyyvttt利用lMkC21得注意注意“”号号整理课件由于 y = R 时,gy 由原方程可得MRgk2因此落到地面( y = R )时的速度和所需时间分别为lRlRRlglRtRyarccos212lRlRgvRy)(222
14、ddtym,2yMmkyyllMkv2lylyylMkltarccos22yRlO整理课件内容小结内容小结1. 一阶线性方程一阶线性方程d( )( )dyP x yQ xx方法方法1 先解齐次方程先解齐次方程 , 再用常数变易法再用常数变易法.方法方法2 用通解公式用通解公式( ) d( ) de( )edP xxP xxyQ xxC整理课件内容小结内容小结可降阶微分方程的解法 降阶法)(. 1)(xfyn逐次积分),(. 2yxfy 令, )(xpy xpydd 则),(. 3yyfy 令, )(ypy yppydd 则整理课件思考与练习思考与练习1. 方程)(yfy 如何代换求解 ?答答: 令)(xpy 或)(ypy 一般说, 用前者方便些. 均可. 有时用后者方便 . 例如,2)(eyy 2. 解二阶可降阶微分方程初值问题需注意哪些问题 ?答答: (1) 一般情况 , 边解边定常数计算简便.(2) 遇到开平方时, 要根据题意确定正负号.整理课件作业作业P309 2 (2);P315 1 (3), (6); 2 (5);P323 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45523.1-2025放射性物质远程操作装置第1部分:通用要求
- GB 15093-2025国徽
- 制药生产车间6S管理培训全攻略
- 写字楼项目精准招商与运营管理实战培训
- 患者身份识别制度培训
- 城市建筑绿色建筑技术重点基础知识点
- 建设工程安全培训课件
- 岗前培训教学方案设计与实施
- 《英国医疗保健》课件
- 特殊病种协议书
- 池塘养殖尾水生态处理技术规范
- 《民用航空行业标准体系》
- 非遗项目数字化保存案例研究
- 人工智能基础知到智慧树章节测试课后答案2024年秋北京科技大学
- 云南省昆明市(2024年-2025年小学六年级语文)部编版小升初真题(下学期)试卷及答案
- 财产保险考试:非车险核保考试真题及答案
- 农产品电子商务-形考任务三-国开(ZJ)-参考资料
- 2024年代耕代种协议书模板范本
- 12.1发散思维与聚合思维的方法 课件-高中政治统编版选择性必修三逻辑与思维
- 感恩母亲课件
- 全国青少年信息素养大赛图形化编程专项测试题及答案
评论
0/150
提交评论