




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四节一、函数单调性的判定法一、函数单调性的判定法 二、曲线的凹凸与拐点二、曲线的凹凸与拐点 函数的单调性与 曲线的凹凸性 第三三章 一、一、 函数单调性的判定法函数单调性的判定法若定理定理 1. 设函数)(xf0)( xf则 在 I 内单调递增)(xf, )0)( xf(递减) .证证: 无妨设,0)(Ixxf任取)(,2121xxIxx由拉格朗日中值定理得)()()(1212xxfxfxf),(21xxI0故. )()(21xfxf这说明 在 I 内单调递增.)(xf在开区间 I 内可导,证毕例例1. 确定函数31292)(23xxxxf的单调区间.解解:12186)(2xxxf)2)(1
2、(6xx令,0)( xf得2, 1xxx)(xf )(xf) 1,(2001)2,1 (),2(21故)(xf的单调增单调增区间为, ) 1,();,2()(xf的单调减单调减区间为).2,1 (12xOy12yxO说明说明: 单调区间的分界点除驻点外,也可是导数不存在的点. 例如,),(,32xxy332xy 0 xy32xy 2) 如果函数在某驻点两边导数同号, 则不改变函数的单调性 .例如,),(,3xxy23xy 00 xyyOx3xy 例例2. 证明20 x时, 成立不等式.2sinxx证证: 令,2sin)(xxxf,2,0()(上连续在则xf,上可导在)2,0(2sincos)(
3、xxxxxf)tan(cos2xxxx1xtanx0,)2,0()(内单调递减在因此xf从而2,0(,2sinxxx0)2()( fxf,2)(处左连续在又xf因此且* 证明0tanxx令,tan)(xxx则xx2sec1)(x2tan),0(,02x,),0()(2上递减在x从而0)0()(x即),0(,0tan2xxxAB定义定义 . 设函数)(xf在区间 I 上连续 ,21Ixx(1) 若恒有,2)()()2(2121xfxfxxf则称的)(xf图形是凹凹的;(2) 若恒有,2)()()2(2121xfxfxxf则称的)(xf图形是凸凸的 .二、曲线的凹凸与拐点二、曲线的凹凸与拐点yOx
4、2x1x221xx yOx2x1x221xx 连续曲线上有切线的凹凸分界点称为拐点拐点 .yOx拐点定理定理2.(凹凸判定法)(xf(1) 在 I 内,0)( xf则 f (x) 在 I 内图形是凹的 ;(2) 在 I 内,0)( xf则 f (x) 在 I 内图形是凸的 .证证:,21Ixx利用一阶泰勒公式可得)()(1fxf)()(2fxf两式相加22!21)(12xx )()(21ff ,0)(时当 xf说明 (1) 成立; (2) 设函数在区间I 上有二阶导数证毕,221xx 记)(f )(1x)(f )(2x!2)(2f 22)(x!2)(1f 21)(x)(2)()(21fxfxf
5、),(2)()(21fxfxfxyO例例3. 判断曲线4xy 的凹凸性.解解:,43xy 212xy 时,当0 x;0 y,0时x, 0 y故曲线4xy 在),(上是向上凹的.说明说明:1) 若在某点二阶导数为 0 ,2) 根据拐点的定义及上述定理, 可得拐点的判别法如下:若曲线)(xfy ,0连续在点x0)(0 xf或不存在,但)(xf 在 两侧异号异号,0 x则点)(,(00 xfx是曲线)(xfy 的一个拐点.则曲线的凹凸性不变 .在其两侧二阶导数不变号,例例4. 求曲线3xy 的拐点. 解解:,3231xy3592 xyxy y0)0,(),0(不存在0因此点 ( 0 , 0 ) 为曲
6、线3xy 的拐点 .Oxy凹凸xxy24362 )(3632xx对应271121,1yy例例5. 求曲线14334xxy的凹凸区间及拐点.解解: 1) 求y ,121223xxy2) 求拐点可疑点坐标令0 y得,03221xx3) 列表判别)0,(),0(32),(32y xy0320012711故该曲线在)0,(),(32及上向上凹,向上凸 , 点 ( 0 , 1 ) 及),(271132均为拐点.上在),0(32凹凹凸32) 1 , 0(),(271132xyO内容小结内容小结1. 可导函数单调性判别Ixxf,0)()(xf在 I 上单调递增Ixxf,0)()(xf在 I 上单调递减2.曲
7、线凹凸与拐点的判别Ixxf ,0)(上向上凹在曲线Ixfy)(Ixxf ,0)(+上向上凸在曲线Ixfy)(拐点 连续曲线上有切线的凹凸分界点思考与练习思考与练习 1 ,0上,0)( xf则, ) 1 (, )0(ff)0() 1 (ff或) 1 ()0(ff的大小顺序是 ( )0() 1 ()0() 1 ()(ffffA)0()0() 1 () 1 ()(ffffB)0() 1 ()0() 1 ()(ffffC)0() 1 ()0() 1 ()(ffffD提示提示: 利用)(0)(xfxf 单调增加 ,) 10()()0() 1 (fff及B1. 设在 .),(21)e1,(21212. 曲
8、线2e1xy的凹区间是凸区间是拐点为提示提示:)21 (e222xyx ),(2121),(21及及yOx)e1,(2121)e1,(2121 ; ;作业作业 P152 3 (2),(6) ; 5 (4) ; 9 (3); 10 (3) ; 14 112xxy有位于一直线的三个拐点.1. 求证曲线 证明:证明: y y222) 1(21xxx3223) 1() 133(2xxxx32) 1()32)(32)(1(2xxxxxxx2) 1() 1(222) 1(x42) 1(x)22(x22) 1(x)21 (2xx ) 1(22xx2令0 y得,11x, )1,1(从而三个拐点为因为32所以三个拐点共线.323x,322x, )34831,32()34831,32(3211348311134831112xxy32) 1()32)(32)(1(2 xxx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年SIC涂层石英玻璃管合作协议书
- 2025年物理治疗康复设备项目建议书
- 专业水平及证书考取成绩证明书(5篇)
- 医学专家职业能力证明书(5篇)
- 公司股份认购协议书条款内容
- 游戏玩家账号买卖协议
- 快递物流行业配送中心建设协议
- 绿色农产品供应购销协议样板文件
- 体育场馆服务管理合同
- 渔业资源捕捞与供应保障协议
- 绿色汽车修理技术研究
- 5Why分析法(经典完整版)
- 人工智能在水土保持中的应用
- 乡村振兴中的乡村安全与稳定维护
- 营销策划 -菌小宝益生菌2023品牌介绍手册
- 夫妻婚内房产赠与合同范本【专业版】
- 康复评定-常用康复评定项目课件
- 物业承接查验标准及表格
- 马克思主义基本原理智慧树知到课后章节答案2023年下湖南大学
- (完整版)数字信号处理教案(东南大学)
- 第三章-绿色植物与生物圈的水循环-课件
评论
0/150
提交评论