高考理科数学--三角函数真题汇总_第1页
高考理科数学--三角函数真题汇总_第2页
高考理科数学--三角函数真题汇总_第3页
高考理科数学--三角函数真题汇总_第4页
高考理科数学--三角函数真题汇总_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(2009年全国II理数)设4ABC的内角A、B、C的对边长分别为 a、b、c,广门 3XXJ3(一理O)十 COS耳=3 产二-e ,求 B.(2010年广东理数)已知向量互相垂直,其中(1)求和的值;乳诋一口)=若声.cosf?,求的值.(2010年广东理数)已知函数笈12时取得最大值4.(i)求3的最小正周期;(2)求,3的解析式;(2010年安徽理数)设仃是锐角三角形,电瓦二分别是内角 凡事所对边长,并且H.Rlift' A. siti< +5) £»i<(I)求角川的值;(n)若.【c -22.虫=2/ ,求"(其中v心)。/(x)

2、= Asiu3r+ 0A >(),%(-»,-Hr),12312-r jci 一言 win 工注一一(2010年湖北理数)已知函数f(x)= 三 324(I)求函数f(x)的最小正周期;(n)求函数h (x) =f(x) g(x)的最大值,并求使 h(x)取得最大值的x的集合。(2010年辽宁理数)在ABC中,a, b, c分别为内角 A, B, C的对边,且 工qfsin 内 = £工以-i- d'a see B. -i二0-+ 匕=in C.(I )求A的大小;(n)求宜拄上+。制u的最大值.COSi2C =(2010年浙江理数 ABC中,角A、B C所对

3、的边分别为 a,b,c,已知(I)求sinC的值;(n)当 a=2, 2sinA=sinC 时,求 b 及 c 的长.(2010年天津理数)已知函数Ft,)一二事&士*舅工力0工匕-Kee (I )求函数 ”G的最小正周期及在区间L '二上的最大值和最小值; (n )若52,求、-E上F的值。/(x)二 2sin x La e R(2011年广东理数)已知函数J 6J(I)求' J的值;幺"J 3*小2(3/为=, 便式立斗向(n)设 L' -J*,求的值.(2011年湖北理数)设ABC的内角A、B、C所对的边分别为 a、b、c,已知a=1, b=2,

4、1cosC=(1)求ABC的周长;(2)求 cos (A-C)的值.(2011年浙江理数)在 ABC中,角A, B, C,所对的边分别为 a, b, c.已知 工sinA+sinC=psinB (pC R .且 ac=4b2.5(1)当p= £ b=1时,求a, c的值;(2)若角B为锐角,求p的取值范围.(2011 年重庆理数)设厌 R, f (x) =cosx (asinxcosx) +cos ( * x)满足rJL UHi求函数f (x)在 4 24 上的最大值和最小值.门谕=(2011年安徽理数)设1 + ©文、其中上为正实数(I )当臼一3时,求八力的极值点;(n

5、)若为天上的单调函数,求 上的取值范围。(2011年北京理数)已知函数(I )求,8的最小正周期:冗 JE1|I:1. I(n)求,小)在区间L 6,4 J上的最大值和最小值。(2011年山东理数)在 ABC中,内角 A, B, C的对边分别为a, b, cnsAr-2 _ 2c-acosB b(I)求smA的值;1(II)若 cosB=4 , b=2,的面积 $(2011年天津理数)已知函数-4 ,(I )求 孔染的定义域与最小正周期;卢、(H)设T吟1若若求,的大小.(2012年安徽理数)设函数/(.v) = -cos(2.v + )+ sin:工一(I)求函数/(2的最小正周期;(II)

6、设函数以切对任意x过有於十73 ,且当问吟;求函数宫工)在一汉。上的解析式。(2012年北京理数)已知函数(sinx-cosx)sin 2x/(X>=;sin x(I)求 f(K)的定义域及最小正周期(n)求的单调递增区间。f (k) =2gos (Gk+三)(2012年广东理数)已知函数6 (其中0, xCR)的最小正周期为10兀.(1)求3的值;m "Q,P £0,三f(50+) =-1 f (5P 一2冗)喈(2)设上,35,& li,求 cos(a + $的值.(2012年全国课标理数)已知不分别为X4BC三个内角4瓦灯的对边,(7cosC + -J3

7、a si n C - 3 -仁=0(1)求T (2)若白二2,的面积为百;求瓦c .(2012年辽宁理数)在区塞C中,角A、B、C的对边分别为a, b, c角A, B, C成等差数 列。(I )求8ss的值;(n)边a, b, c成等比数列,求与汨“6tle的值。m = (sin x, 1), n =/ cos r, cos > 0)(2012年山东理数)已知向量2,函数/(')二而占的最大值为6.(I)求以;n(n)将函数'=的图象向左平移12个单位,再将所得图象上各点的横坐标缩短为- 1原来的之倍,纵坐标不变,得到函数1 = 的图象.求在24上的值域.f (x)=5i

8、n( 2工 + ) + sin( 2r)4 2 cos2 x L 工 W 至(2012年天津理数)已知函数口3(I)求函数 /、式)的最小正周期;(n)求函数/划在区间4 4上的最大值和最小值.(2013年四川理数)在ABC中,角A、B、C的对边分别a、b、c,且2cos2cosb _ sin (A_ B)ginB+cog(A+C)= -£D1(1)求cosA的值;若4人厄b=5,求向量BA在EC方向上的投影.(2013年全国II理数) ABC在内角 A、B、C的对边分别为 a, b, c,已知a=bcosC+csinB.(I )求 B;(n)若b=2,求 ABC面积的最大值.(20

9、13年天津理数)已知函数2sin ( 2k+-) +6sinKcosK _ 2co sk+1, k E R(1)求f (x)的最小正周期;(2)求f (x)在区间0,2 上的最大值和最小值.内一点,/ BPC= 90°BC=1,PAABC若PB=X ,求PA;(2)若/ APB= 150 °,求 tan/PBA于(x) = dn(x )- cos(x-=2sin/ :(2013年湖南理数)已知函数632(I)若口是第一象限角,且5 。求g 的值;III)求使/(2 g8成立的x的取值集合。(2014年全国新课标I理数)已知小瓦。分别为AjiSC的三个内角WC的对边,fl=2

10、,且QI以血腔如用= (c-加nC则面积的最大值为1(2014年安徽理数)设ABC的内角A, B, C所对边的长分别是 a, b, c,且b=3, c= 1,A=2B。(I)求a的值;IT 血(4*勺(n)求4的值。(2014年北京理数)如图,在 4ABC中,cnsZjDC =CD = 27ZB= -3 ,,点刀在边上,且(1)求iNftAD求,4"的长(2014年广东理数)已知函数4且122 .(1)求/的值;Oq= - 壮也刍 代 )(2)若22 ,求 4(2014年湖北理数)某实验室一天的温度(单位:)随时间七(单位;h)的变化近似满足函数关系;. 一-(1)求实验室这一天的最

11、大温差;(2)若要求实验室温度不高于 11则在哪段时间实验室需要降温?(2014年湖南理数)如图5,在平面四边形 ABCD中,AD = 1, CD = 2, AC =扛.(I)求 cosZCU)的值;cosZ£AD3(n)若146求bc的长.(2014年辽宁理数)在中,内角A, B, C的对边a, b, c,且金>17 ,已知CQ£ =3ABC = 23 b = 3 求.1. a和c的值;2. g,£C)的值.(2014年山东理数)已知向量1的3 2幻,"E'mZ,设函数,二片,且_(三,S)(包,一2)y =的图象过点12 和点3.(I)

12、求私题的值;(n)将¥ = /(附的图象向左平移中(0 <*<")个单位后得到函数尸二且(工)的图象. 若的图象上各最高点到点 耳的距离的最小值为i,求¥工式工)的单调增区间(2014年陕西理数)ABC的内角A,B,C所对的边分别为 岫£。(I)若01fcle成等差数列,证明:由d+皿C=2而<T+C).(n)若心也。成等比数列,求bsB的最小值。,3 二 sin(?r q)(2014年四川理数)已知函数4 .(I)求,3的单调递增区间;=-£DS(£E + Jcas2iI(n)若a是第二象限角,354,求cos a

13、- sin a的值.,(力(2014年天津理数)已知函数2,求/(工)在闭区间JT H4 ©上的最大值和最小值.(2014年浙江理数)在4ABC中,内角A,B,C所对的边分别为a, b, c.已知b,c =收'Cos,二出&1/cosjI一4sin.KcosA_(I)求角C的大小;siiij4=-,h jr i一片喘的图像关于直(II)若 5求4ABC的面积。/(£)=后:iL(m+0)(2014年重庆理数)已知函数1七二一线 3对称,且图像上相邻两个最高点的距离为第2.若棉用纣用,求邛用的值.y(x) = cos d而工 4-cos r)(2014年福建理

14、数)已知函数2n * ,收0<<r<一sma = 、1 .若工,且2 ,求的值;2 .求函数 7(障的最小正周期及单调递增区间.面积是(2015年全国II理数)山山。中,口是8cl上的点,且口平分上瓦匕正刀 仞C面积的2倍.sinZJ(I )求加一 ;(n)若-3=1,?,求3。和"的长.日工)=sn cos Aan3 (2015年北京理数)已知函数八 J 222(i)求")的最小正周期;(n)求,在区间一匹°上的最小值。(2015年广东理数)在平面直角坐标系 xOy中,已知向量丘二n工cos祖KW电一)(1)若(2)若雨与的夹角为3 ,求H的值

15、。笈(2015年山东理数)设三(,)Ahk。?日工一CC35 2 (x+4 ).(I)求S)的单调区间;(n)在锐角 ABC中,角A,B,C,的对边分别为a,b,c,若 =0,a=1,求 ABC面积的最大 值。(2015年陕西理数)BC的内角A, B, C所对的边分别为a, b, c,向量m= (a,6b)与 n=( sinB)平行(I)求A (II)若a=仃,b=2,求&ABC的面积。/(jc)-sn x-m(2015年天津理数)已知函数(I)求,的最小正周期;n jt(n)求,在区间L =4中的最大值和最小值。n(2015年浙江理数)在4ABC中,内角A, B, C所对的边分别为a, b, c,已知A=4 , 1 .(I)求tanC的值;(II)若ABC的面积为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论