电力拖动自动控制系统论文_第1页
电力拖动自动控制系统论文_第2页
电力拖动自动控制系统论文_第3页
电力拖动自动控制系统论文_第4页
电力拖动自动控制系统论文_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、东华大学研究生课程论文封面教师填写:得分任课教师签名年月日学生填写:姓名洪豪学号2151208专业控制工程导师周武能课程名称电力拖动自动控制系统任课教师孔维健课程学分2上课时间20 15至20 15学年第1学期星期3递交时间2015年12月29日本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中己明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。论文作者签名: 洪豪注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。步电

2、机的矢量控制理论本章首先阐述异步电动机的三相坐标系下的数学模型,然后根据坐标变换理论,得到了它在两相静 止坐标系下和两相同步坐标系下的数学方程,在此基础之上介绍了异步电机的矢量控制原理L】。1.1异步电机的数学模型由于异步电机矢量控制调速系统的控制方式比较复杂,要确定最佳的方式,必须对系统动静态特性 进行充分的研究。异步电机本质上是一个高阶、非线性、强耦合的多变 量系统,为了便于研究,一般进 行如下假设:(1) 三相定子绕组和转子绕组在空间均分布,即在空间互差所产生的磁动势沿气隙圆周按正弦分布,并忽略空间谐波;(2) 各相绕组的自感和互感都是线性的,即忽略磁路饱和的影响;(3) 不考虑频率和温

3、度变化对电阻的影响;(4) 忽略铁耗的影响。无论三相异步电动机转子绕组为绕线型还是笼型,均将它等效为绕线转子,并将转 子参数换算到定 子侧,换算后的每相绕组匝数都相等。这样异步电机数模型等效电路如图11所示。图11异步电机的物理模型图11中,定子三相对称绕组轴线A、B, C在空间上固定并且互差120。,转子对称绕组的轴线a、b、C随转子一起旋转。我们把定子A相绕组的轴线作为空间参考坐标 轴,转子&轴和定子A轴间的 角度,作为空间角位移变量。规定各绕组相电压、电流及 磁链的正方向符合电动机惯例和右手螺旋定 则。这样,我们可以得到异步电机在三相静 止坐标系下的电压方程、磁链方程、转矩方程和

4、运动方程。1.1.1异步电机在三相静止坐标系下的数学模型1、三相定子绕组的电压平衡方程为(I-I)式中以微分算子P代替微分符号相应地,三相转子绕组折算到定子侧的电压方程(1-2)式: WCVa %Lc为定子和转子相电压的瞬时值;iA, iB, i , ia, ib, icC为定子和转子相电流的瞬时值;LLlLiJLlJLIJLLlLLlA, B. C, a, b, C为定子和转子相磁链的瞬时值;Sr为定子和转子电阻。将定子和转子电压方程写成矩阵形式:(1-3)2、磁链方程由于绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,根据 图1-1可列出三 相异步电机的磁链方程1-4 ()

5、 或者写成:屮二Li (1-5)式中L是6x6电感矩阵,其中对角线上元素是各绕组的自感,其余元素是各烧组间的互感。与电机它所交链的磁通是主磁通与漏磁通之和,因此对于各相绕组,绕组交链的磁通主要有两类:一类是只与一相绕组交链而不穿过气隙的漏 磁通;另一类是穿过气隙的互从以上方程可知,定子绕组和转子绕组之间的互感与转子位置角二有关,它们是变参量,这是系统转子各相自感为:LAA 二 LBBL LkCC .mLSS(l-6)LLaak bbLCCLSI(1-7)在假设气息磁通为正线分布的条件下,两相绕组间的互感为:=LACAB=L=LBCBA=LCA Lm/2(1-8)Lab二 LaC-L2(1-9)

6、Bb二 LCC 二 LaATLm COS(I-IO)LAbBa二 LCB BCLaC 一-LmCoS'120 )(I-Il)Ba LaBLC厂LbC Lm240 )(1-12)感磁通,称为主磁通。定子各相自感为(1-19)非线性的一个根源。将方程(1-8) (1-12)带入式(1-4),即可得到磁链 方程。3、电磁转矩方程由机电能量转换原理,可得到电磁转矩方程(1-13)从上式可以看出,电磁转矩是定子电流、转子电流及角二的函数,是一个多变量,非线性且强耦合的函数。4、运动方程电机的运动方程为TTI (J/Pn) (d rdt) (D/Pn) r式中,为负载转矩;J为转动惯量。对于恒转矩

7、负载,阻尼系数D二0,则有1.1.2坐标变换及变换矩阵(1-15)如果将交流电机的物理模型等效地变换成类似直流电机的模式,分析和控制问题就可以大为简化。 上节中得到的异步电机动态数学模型非常复杂,要分析和求解这些非线性方程显然是非常困难的,即便是 做了一些假设,要画出清晰的结构图也并不容易。采用坐标变换的方法可以使变换后的数学模型容易处理 一些,有利于异步电机的分析和控制。因此,坐标变换是实现矢量控制的关键。由异步电动机坐标系可以 看到,它涉及到了两种坐标变换式:3s2s变换和2s2r旋转变换,又称克拉克(CIQrk)变换和2s2r变 换即派克(Park)变换。通过坐标变换的方法,使得变化后的

8、数学模型得到简化。1.3/2变换(CIark变换)由电机学原理可知,交流电机三相对称的静止绕组A、B C,通以三相平衡的正弦电流“、叩寸,产生的合成磁动势是旋转磁动势F,且以同步转速I旋转。两相绕组的轴线分别为、:,空间位置相差90:,构成、'两相静止坐标系坐标轴逆时针超前坐 标轴90) o在该两相固定绕组、中,加时间上相差90:的两相平衡交流电流匚、时,同样也 可以产生与三相定子合成磁动势相同的空间矢量F,且同步角频率为“。三相异步电动机的定子三相绕组和与之等效的两相异步电动机定子绕 组、,各相磁 势矢量的空间位置如图1. 2所示。根据变换前后总磁动势不变和变换前后总功率相等的原则,

9、3s2s变换用矩阵可表示为(1-16)图1. 2三相静止到两相静止变换其反变换式如下:1-17)0因此,经过3s2s变换!机模型变为两相正交的异步电机模型。32、i 变换八-I.l,a从图1. 3中旳两相静止坐标系到!两相旋转坐标廂M, T的变换称作Pdrk变换,简称2s2t变块宀其中丄甕平静生宀'一、-图1-3所示,其中,静止坐标系的两相交、的同步旋转磁动势。图1. 3 -两相静止到两相旋转变换根据图1. 3的几何关系写成矩阵形式如下(1-18)旋转反变换如下:其中二为M-T坐标 和静止-:的夹角1. 1. 3异步电机在两相坐标系下的数学模型上面分析得到了异步电机的动态数学模型,为了

10、矢量控制分析,必须把它转换为M-T旋转坐标系下的数学模型,因此,必须先将三相静止坐标系下的模型转换为一两相静止坐标系下的模 型。然后,通过旋转变换将异步电机模型转换到M-T坐标系中,其结果如下所示。1、异步电机在两相静止坐标系的数学模型经过3s2s变换,就得到了三相异步电机在两相静止坐标系下的数学模型。电压方程(1-20(2) 磁链方程(1-21)(3) 电磁转矩方程TPLG i*e厂 n m s -(1一22)(4) 运动方程 _ 丄 J 蚁(1-23)在-:坐标系中绕组都落在两根相互垂直的轴上,两组绕组间没有耦合,矩阵中所有元素均为常系数,消除了异步电动机在三相静止坐标系上的数学模型中的一

11、个非线性的根源。1.14异步电机在两相同步旋转坐标系的数学模型两相旋转坐标系以同步转速旋转,经过3s2r变换,就得到了异步电机在任意两相同步旋转坐标系上的数学模型:(1)电压方程(1-24)式中:"表示定子的同步角频率,"表示转差角频率磁链方程(1-25)(3)电磁转矩方程L (iii1ein mStnnSnI Ft(1-26)(4)运动方程-* J弘(1-27)式(1-24)-(1-27)是矢量控制中重要勺方程式,接下来的基于转子磁场定向的矢量控制都要依据这些方程式。Pl12异步电机矢量控制矢量控制(VeCtOr COntrOl)理论,是在20世纪70年代初由美国学者和德

12、国学者各自提岀的,以后在实践中经过改进,形成了现在普遍采用的矢量控制方法,矢量控制的基本思想是:按照 旋转磁场等效的原则,通过一系列的坐标变换(矢量变换),把定子电流分解成互相垂直的励磁分量和转矩分量,在交流调速系统中,如果能保持励磁分量不变,控制转矩分 量,就可以像控制直流电机那样控制交流电机了。它们的诞生使交流变 频调速技术大大的迈进了一步,以 后,在实际中许多学者进行了大量的工作,经过不断的工作,不断的改进,历经30多年的时间,达到了 可与直流调速系统相媲美的程度。1. 2. 1矢量控制的原理通过前面的分析我们可以发现,异步电机的矢量控制理论厂】【勺,就是以产生同样的旋转磁动势为 准则,

13、在三相坐标系下的定子交流电流“、唁、紀通过3s2s变换,可以等效成两相静止坐标系下的电流',再经过同步旋转变换,把电机定子电流分解成 互相垂直的励磁电流汶 和转矩电流S当观察着站在铁心上,并与坐标系一起旋转时,交流电机便等效成了直流电机。其中,交 流电机的转子总磁通 Sr就变成了等效的直流电机的磁通,M绕组相当于直流电机的励磁绕组,讶目当于励磁电流,T绕组相当于伪静止 绕组,“相当于与 转矩成正比的电枢电流。以上这些等效关系可以用2. 4所示的结构图来表示,图中,u> 为三相交流输入,为转速输出。图1. 4感应电机的坐标变换结构图经过图14所示的变换后,异步电机等效成了直流电机,

14、因此,可以模仿直流电机 的控制方法来实 现对异步电机的控制,先求得直流电机的控制量,再经过相应的坐标反变换,就实现了异步电机的矢量控制。根据等效控制理论,可以构成直接控制,曾J 矢量控制系统,如图1. 5所示。是人们首次提出矢量图15矢量控制系统的基本框图从图15可以看出,在设计矢量变换控制系统时卜我们可J-L a;制原理及结构I略电流控制变频TR 与速信机内部的旋转变换环节相抵2消3 j2s: 3电流变换与旺亦内部的匚*1.2.2转子磁1971年德国F. BlaSChke提出“感应电机磁场定向的控制原理控制的概念,以后在实践中经过不断改进,形成了现在普遍采用的矢量控制系统。矢量控制系统也称为

15、 磁场定向控制,即选择电机某一旋转磁场方向作为特定的同步旋转坐标方向。对于异步电机矢量控制系 统的磁场定向通常有三种,即转子磁场定向,定子磁场 定向,气隙磁场定向等,本文采用转子磁场定向 控制方法。Ur通过分析发现,如规定忙仙鑼椰爭旳耕魁瞬無髒链恢辆方向,并称之为磁化轴,这样M-T坐标系就变成了转子磁场定向坐标步转速旋转的矢量。屮二屮由同步坐标系下异步电机的磁链方程可得:(1-28)O 二 LiLir rt m st(1-29)U U对于交流异步电机有:-=o,电压方程可以转化为以下形式(1-30)由式(1-27 )-( 1-29 )可推导下式(1-31)(1-32)式中r二Lr Rr为转子时

16、间常数。电磁转矩可以表示为: pLm.(1-33)式1-30表明,异步电机经过坐标变换,将定子电流解耦分解成ism、两个直流分量,转子磁链'仅由定子电流励磁分量匸产生,与转矩分量无关。'r与込之屮间的传递函数是一阶惯性环节,当励磁分量 突变时,的变换要受到励磁惯性的阻扰,这和直流电机励磁 绕组的惯性作用是一致的,式子(1-33)中,匸是定子电流的转矩分量,1当5不变时即恒定时,如果”发T变化,转矩立即随之成正比的变化。因此,T坐标系按转子磁场定向以后,在定子电流的两个分量之间实现了解耦,唯一由4决定, U则只影响转矩,同直流电机的励磁电流和电枢电流相对应,这样大大简化了交流变频

17、调速系统的控制问 题。利用(1-27)-( 1-33)的公式可将异步电机数学模型描述成图1. 6所示的形式图1. 6异步电机矢量变换和解耦数学模型从以上分析可知,要使磁场定向控制具有和直流调速系统一样的动态性能,在调速屮过程中保持转子磁链恒定是非常重要的。根据控制方案中是否进行转子磁链的反馈控制及其观测,磁场定向控制可分为直接磁场定向控制和 间接磁场定向控制(又称转差频率控制)O图1. 7直接型矢量控制方框图ASR-转速调节器、ATR-转矩调节器、力-磁链调节器图1. 7是一个典型的转速、磁链闭坏矢量控制系统,包括速度控制环和磁链控制环。速度给定与转速 反馈进行比较,经过Pl转速调节器,为了提

18、高转速和磁链的闭环控制系统解耦性能,在转速内环增设了转矩内环控制,在图2.7中,转矩内坏之所以有助于解耦,是因为磁链对控制对象的影响相当于一种扰动,转矩内环可以抑止这个扰动,从而 改造了转速子系 统,使它少受磁链变化的影响。通过转矩调节器给岀了电机负载需要的转矩电流磁链控制环给出相 应的磁链给定,在额定转速以下,磁链幅值保持恒定(恒 转矩),额定转速以上给出相应的弱磁信号(恒功 率),给定磁链与实测或计算的反馈磁链进行比较,再经过磁链Pl调节器,产生相应的定子电流匸。定 子电流的两个分量经过旋转坐标变换,得到静止的分量】S和辽再经过2/3变换得到三相静止电流,PWh环节采用电流滞环控制,使三相

19、实际电流跟踪给定电流信号。间接磁场定向控制采用磁链开环控制,在磁通运行过程中不检测转子磁链信号,系统结构简单。它 利用转差公式二LIniSt /八、,形成转差矢量控制系统,利用SrrLr屮L(2-9)得到同步角速度,该方案在实际中也获得广泛的应用,控制方案如图18所示图18间接矢量控制方框图但该方法更依赖于电机参数的准确检测,当参数时变或不确定时,系统动态性能大受影响。且磁链开环在 动态过程中存在偏差,其性能不及磁链闭环控制系统。无论是直接矢量控制还是间接矢量控制,都具有动态性能好、调速范围宽的优点。动态性能受电机 参数变化的影响是其主要的不足之处。2磁链观测和转速估计的方法研究在异步电机无速

20、度传感器的矢量控制系统中,磁链观测L】和转速估计是两个关键问题。系统性能 的好坏直接取决于磁链观测的准确度和转速估计的精度。因此,选取合适的方法就成为系统设计的首要问 题。2. 1磁链观测方法研究在直接矢量控制方法中,有必要估计转子磁链分量和*厂,以便可以计算单位 矢量和转子磁链幅值。 下面讨论两种磁链估计的方法。2.1.1基于电压模型的方法该方法的基本思想是:利用检测得到的电机端电压和电流,由静止坐标系下的电机等效 电路导出的方程式来计算磁链。由图2.1两相静止坐标系等效电路图可知:图3. 1等效电路(2-1)(2-2)(2-3)(2-4)(3-5)(2-6)(2-7)借助于式(2-4)、(

21、2-5),分别消去式(2-6) >(2-7)中的、前,从而得到(2-8)mlr, s:同样,借助于式(2-4 )、(2-5),上面两个方程式可以写成如下形式:二 P(rs. : S(一 險)dt-二 LSis:LnI(2-10)二、(S :- rLsis )=DILnILr _LnI(2-11)式中,I- L2m (L rLs)-RgiS : ) dt - Lsi.Iq将式(2-8 )、( 2-9 )代入转矩方程式中并加以简化,得到静止坐标系下的转矩表达式为_3 P LT =-(一)丄伴 i a 屮屛)32)e 2 2 ) II s r s: . /22 Lm图2. 2表示使用微处理器的

22、反馈信号估计框图,图中诸如定子磁链、气隙磁链和电磁转矩等附加信号量的估计也被标出。在对检测信号进行A/D转换前需要对被检测的电流电压信号实行硬件低通滤波,并采用运算放大器实现3S/2S变换。一般情况下,电机是无中线连接的电机,因此只需要两个电流传感器。矢量传动采用的是电流控制型PW逆变器,如前所述,采用电流控制合乎逻辑,因为磁链和转矩都与电流直接相关。逆变 器可以采用滞坏电 流控制,或电流控制内的某类电压控制。值得注意的是,单位矢量的任何误差或与反馈信号相关的畸变都 会影响传动系统的性能。在低频(包括零速度)情况下,上面所讨论的直接矢量控制方法难以获得良好性能。这是因为:(1)、低频时,电压信

23、号Us:.和USl非常小。另外,直流偏移量导致在积分器输岀端上出现累积,从而使理想的积分变得很困难。(2)、电阻Rs、电感Lis、LIr和Ln)等参数的变化将使信号估计的精度降低。尤其是RS的温度 变化影响更为显着。在电压较高时,参数变化的影响可以被忽略。在工业应用中,通常要求矢量控制系统能工作在零速度。此时,基于电压模型信号估 计的直接矢量控制不能被采用图2 2基于电压模型的反馈信号估计框图2缶2棊于电流模型的方法 在低速区域,采用速度和电流信号能更容易地估计转子磁链分量电路的转子电路方程式为drotRIr:dt3S / 2SADCdf-R”+RrirPCOCOSdt-r屮Sin日isd =

24、isRsin 日'icos日isor=isRsin 日-i cos日(2旷3S/2SADC2-14)Rsis:ilsis Lisis:.Sd 1在上面方程式的两边分别加入(LmR /Ljis: 和(一尺/ L爪,可得到dt' LP(LmiSiLr,)L Rm r iISOtLr(2-15)1" 1Lr(2-16)汕昱(Lidt L分别将式(2-6)和式(2-7)代入上面两式,简化后可得到dr:LnI 1dtS,<r :ILnI :is_ 1CltTrT式中,Tr - Lr/Rr为转子回路的时间常数。式(2-17)(2-18)(2-17)和式(2-18)表明转子磁

25、链 是定子电流和速度的函数。因此,若已知这些信号,则磁链和相应的单位矢量信号就可以被估算。这些方程式被定义为用于磁链估算的电流模型,它们最初是由BIaSChke提岀的。Te. is: .、isi,以及定子和气隙磁链,它们都可以从电流模型中估算岀来。该模型的磁链估计需要 一个速度编码器,但这种方法的优点是系统能零速度运行。然而,这种方法的估算精度仍受电机参数变 化的影响,尤其是转子电阻受温度和集肤效应的影响存在非常大的变化并且参数的补偿也非常困难。由于较高速度基于电压模型的磁链估计效果更好,而基于电流模型的估计可在任何速度范围内使 用,因此可以建立一个混合模型用于估计,即在高速阶段采用电压模型,

26、在低速阶段让其平稳地切换至 电流模型。2. 2基于模型参考自适应的转速辨识上面我们讨论了两种磁链估计的方法,其中电压模型的磁链估计公式为(2-10 )和(2-11),而电流模型的磁链估计公式为(2-17 )和(2-18 ),我们可以把不含速度的电压模型作为 参考模型,把含速度变量的电流模型作为可调模型,将两个模型具有相同物理意义的输出量构成误差, 采用合适的自适应机构调整可调模型的参数即转速,以达到转速的辨识。2. 2.1基于模型参考自适应系统设计的基本理论由于模型参考自适应广】辨识算法是一种高性能、复杂度不高、理论相对比较成熟的转速估计方 法,具有受电机参数变化影响较小的特点,在电机控制领域

27、应用较为广泛,目前在电机参数辩识中应用 较多的是输出并联型模型参考自适应,如下图:图2. 3模型参考自适应控制系统结构图从图23可以看出,自适应机构将根据参考模型与可调模型之间的差值来实时调整控制器的参数, 使可调模型跟踪参考模型。因此,模型参考自适应系统的工作过程可以看成是参考模型与可调模型之间 的调整过程。2. 2. 2基于超稳定性和正实性系统的设计确定模型参考自适应系统的自适应算法,即如何设计合适的自适应规律,通常有三种基本方法:以 局部参数最优化理论为基础的设计方法(又称Mrr方法),以李雅普若夫函数为基础的设计方法,以超 稳定与正实性动态系统理论为基础的设计方法。MIT设计方法是以局

28、部参数最优化理论为基础,最早用来设计模型参考自适应系统,其基本最优方法有:梯度法,最速下降法以及共扼梯度法。这些方法的基本思想为:定义岀状态距离的二次性能指标IP,应用最优化理论改变可调系统参数的算法,使从一个恒定IP的曲面转到 另一个对应较低IP的曲面,使得可调模型靠拢参考模型。这种方法没有讨论构成自适应系统的稳定性问 题,己较少采用。考虑到模型参考自适应系统的非线性、时变等特点,因此,稳定性问题是系统设计中的关键问题, 一个完整的模型参考自适应系统设计必须包括稳定性分析,目前,基于稳定性分析的设计方法有以李雅 普诺夫函数为基础的设计方法和以超稳定与正实性动态系统理论为基础的设计方法。以李雅

29、普诺夫函数 为基础的设计方法能够成功地用来设计稳定的模型参考自适应系统,但不知道如何扩大合适的李雅普诺 夫函数来推导它的自适 应规律,所以应用较少,而应用超稳定理论结合正实性动态系统的性质取得一大 簇能保证模型参考自适应系统稳定的自适应规律,然后从中选择合适的自适应率。超稳定性问题是作为绝对稳定性问题的一个推广由波波夫引出的,超稳定概念是针 对能分离成如图 24所示的一类反馈系统的稳定性性质,并把这种结构看作是标准反馈系统。图2. 4标准非线性时变反馈系统系统由一个线性定常系统方框和一个反馈方框构成,反馈方框可以是线性的或非线性的,定常的或 时变的。在绝对稳定性问题中,我们感兴趣的在于找出正向

30、方框所必须 满足的条件,对满足式子为: VW 王 O (i 二 O , 1 , Vm(2-19)的不等式的任何反馈,使得图2-4所示的反馈系统整体渐进稳定,Vi和Wi是反馈框输入 矢量V和输出 矢量W的分量,这两个矢量都是Hl维。POPoV考虑了如图2-3所示的一类反馈系统,如果能满足方程(2-19),就能使整体渐进稳定性。H (0, tj = J: VTWdt 兰O(2-20)式中:0是一个不依赖于t,的有限正常数考虑一个以状态空间表示的闭环系统,它的正向方框的状态方程和输出方程为:(2-21)反馈方框为W = t (V, t,) Ct (2-22)式中X是正向反馈的状态矢量(n维),U和V

31、分别是正向方框的输入和输出矢量(m维),a, B, c, D是恰当维数的矩阵,矩阵O (A,B)完全能控,矩阵(A,C)完全能观,f ( )表示一个矢量泛函。 POPOV研究了如上所述的标准反馈系统,得到以下的超稳定性定理定理1 :由式(2-21)和式(2-22)所描述的反馈系统,当反馈方框满足POPOV积分不等式(2-20),系统为 渐进(超稳定)的充分必要条件为:传递矩阵H(S) = D -C(SI-A)J B必须 是一个严格的正实矩阵。POPOV积分不等式,因此,使用超稳定性方法分析一个稳定性问题,必须首先能够把原来的问题考虑成一个与反馈系统有关的问题,然后还要能够分离岀一部分使它满足而

32、系统的其余部分应该满足相应的条件,以保证整个系统的超稳定性。利用波波夫超稳定性理论设计自适应系统的基本思想是:选择合适的自适律使得整个非线性时变系统是超稳定的,从而保证系统误差趋近于零,即使得可调模型参数趋近于参考模型,从 而达到自适应控制的目的。2. 2. 3基于转子磁链模型的转速辨识方法C. SChaUde首次将模型参考自适应算法引入到电机转速辨识系统中,这也是首次采用稳定性理论设 计异步电机转速辨识的方法。在无速度传感器的控制系统中,我们通过检测电机定子电流和电压值,经过计算可以得到转速大 小,但部分定转子参数会随着电机温升和磁路的饱和而发生变化,影响辨 识精度,而采用模型参考自适 应系

33、统,构造出参考模型和可调模型,利用状态误差选择合适的自适应律,最后计算得到电机的辨识转 速,具有较高的精度。电压模型利用定子电压和定子电流这两种反馈量,观测器中不需要速度这一信息,电压模型转子磁 链观测器中包含一个纯积分环节,由于在观测器中不含转子电阻,其受电机参数变化的影响较小。电压 模型中不需要转速这一变量,为无速度传感器系统的磁场观测带来了极大的方便。电流模型中使用转速 作为其输入信息,可利用电流模型设计速度辨识系统的可调模型。从两相静止坐标系下异步电机的方程,我们可以得到两种形式的转子磁链的估算模型,即电压模型 和电流模型,表示如下电压模型(2-23)式中二=1 - Lm / (LSL

34、r)为漏磁系数电流模型(2-24)在式(2-24)中,是需要辨识的参数,将式中的速度辨识值,? r代替r ,在电机调速过程中,考 虑到传动系统的惯性,认为其参数不变化,设计可调模型表示如下(2-25)(2-26) (2-27)将式(2-24 )减去(2-25 ),可以得到误差方程(2-28)可以将误差方程记作(2-29),Ae-W其中,模型参考自适应系统可以被描述为如图2. 5所示的非线性反馈系统。图2. 5转速枯计的标准反馈系统可以证明前向通道的传递函数(Sl-A)是严格正实的。因此只要考察反馈部分是否满足POPoV不等 式。在设计模型参考自适应规律时,一定要考虑到系统的全局渐进稳定性,确保

35、辨识值收敛于实际值。利用波波夫超稳定性定理设计自适应 规律,取自适应规律为:(2-30)将W和误差变量e代入,波波夫不等式(2-20)变为(2-31)将上式可以分解为如下两个不等式:(2-32)(233)如果不等式(2-32)和(2-33)都能得到满足,则式(2-31)必然成立。将不等式(2-37)转换 为34)取(e, t)为役二Kp(e贸?心一ej?制(2-KP (2-(235)当f二0时,不等式就得到了满足。再考虑不等式(2-32),设有一函数f(t)令且其存在对时间的一阶导数f (t)令f (t)二 ee:(2-36)选取函数(e, t)为Ki2于是不等式变为t -Ki f2 (t j

36、- f2 (0)1 广-1 CIf P+ 心八'显然该式满足波波夫不等式。于是可求得2 (e, t)为:将l(e, t), '2(e, t)表达式代入(2-30),得到人的自适应率(2-38)(2-39)取自适应率为K十&得到的角速度辩识公式为:KP十乙S(2-40)上式(2-40)中为电动机的转速,为按电流方程计算的转子磁链,和 r为按电压方程计算的转子 磁链。辨识算法框图如图2. 6所示。这种方法在辨识角速度同时,还可以提供转子磁链的信息。图2. 6模型参考自适应角速度辫识算法由于仍然采用电压模型法转子磁链观测器来作为参考模型,电压模型的一些固有缺点在这一辨识算法 中仍然存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论