



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、金属 -半导体接触1.金属与半导体接触概论以集成电路( IC)技术为代表的半导体技术在近十几年来已经取得了迅速发展,带来的是一次又一次的信息科技进步,没有哪一种技术能像它一样,带来社会性的深刻变革。 半导体技术的实现依赖于半导体的生产与应用,而在半导体的应用过程中,必然会涉及到半导体与金属电极的接触。大规模集成电路中的铝-硅接触就是典型的实例。金属与半导体接触大致可以分为两类1 :一种是具有整流特性的肖特基接触(也叫整流接触),另一种是类似普通电阻的欧姆接触。金属与半导体接触特性与两种材料的功函数有关。所谓功函数,也称之为逸出功,是指材料的费米能级与真空能级之差,即W=E0-EF(E0 为真空
2、能级, EF为费米能级)。它是表征固体材料对电子的约束能力的物理量。然而,由于金属与半导体的费米能级有所差别,所以其功函数也不相同。 就金属来而言, 其费米能级 EFM 代表电子填充的最高能级水平,所以金属的功函数W M 即为金属向真空发射一个电子所需要的最低能量 (如图);但对半导体的功函数 WS 而言,其功函数是杂质浓度的函数, 而不像金属那样为一常数, 其内部电子填充的最高能级是导带底 EC ,而费米能级FS 一般在C 之下。所以半导体的功函数WS 一EE般要高于电子逸出体外所需要的最低能量。半导体的功函数又可表示成:W = +En。其中, =E-E,称为电子亲和势, En=E -EFS
3、为费米能级与导带底的S0 CC能量差(如图1.1.2)。图金属的电子势阱图 半导体的能带和自由电子势当具有理性洁净平整表面的半导体和金属接触时,二者的功函数 W M 和 W S,一般说来是不相等。其功函数差亦为其费米能级之差,即 WM -W S=EFS-EFM 。所以,当有功函数差的金属和半导体接触并符合理想条件时, 从固体物理学我们知道,由于存在费米能级之差, 电子将从费米能级高的一边转移到费米能级低的一边,直到两者费米能级持平而进入热平衡态为止。2. 金属与半导体接触的四种情况(1)金属与 N 型半导体接触, WM>WS 时WM>WS 意味着金属的费米能级低于半导体的费米能级。
4、 当金属与 N 型半导体理想接触时, 半导体中的电子将向金属转移, 使金属带负电, 但是金属作为电子的的 “海洋 ”,其电势变化非常小; 而在半导体内部靠近半导体表面的区域则形成了由电离施主构成的正电荷空间层, 这样便产生由半导体指向金属的内建电场,该内建电场具有阻止电子进一步从半导体流向金属的作用。 因此,金属与半导体接触的内建电场所引起的电势变化主要发生在半导体的空间电荷区 2 ,使半导体中近表面处的能带向上弯曲形成电子势垒; 而空间电荷区外的能带则随同 EFS 一起下降,直到与EFM 处在同一水平是达到平衡状态,不再有电子的流动,如图。图: W M >W S 的金属与N 型半导体接
5、触前后的能带变化,( a)接触前( b)接触后相对于 EFM 而言,平衡时 EFS 下降的幅度为 WM -WS。若以 V D 表示这一接触引起的半导体表面与体内的电势差,显然有qV D =WM -W S( 1.1)式中,q 是电量, V D 为接触电势差或半导体的表面势; qV D 也就是半导体中的电子进入金属所必须越过的势垒高度; 同样的,金属中的电子若要进入半导体,也要越过一个势垒。高度为式 1.2,式中, qM 极为肖特基势垒的高度。qM =WM- =qVD+En( 1.2)当金属与 N 型半导体接触时, 若 WM>W S,则在半导体表面形成一个由电离施主构成的空间电荷区, 其中电
6、子浓度极低, 对电子的传导性极低, 是一个高阻区域,常被称为电子阻挡层。(2)金属与 N 型半导体接触, WM<WS 时若 WM <WS,由于金属与半导体的费米能级不平衡,电子将从金属流向半导体,在半导体表面区域形成负电荷空间区。 由此在半导体近表面产生由半导体表面指向体内的内建电场, 导致半导体的能带自体内到表面向下弯曲, 使半导体表面的电子密度比体内高很多,增加了对电子的传导特性,因而是一个高导区域,称之为反阻挡层。接触以后的能带结构为图。反阻挡层是很薄的高导层,它对半导体和金属之间接触电阻的影响极小,因此在实验中不易觉察到其存在。图M <W S 时,金属和N 型半导体在
7、平衡状态下的能带(3)金属与P 型半导体接触金属和P 型半导体接触时,形成阻挡层的条件与N 型半导体的情况恰好相反:当 W M >WS 时,能带向上弯曲,导致表面比体内空穴密度更高,增加电荷的传导特性,形成 P 型反阻挡层;当 WM <WS 时,能带向下弯曲成为空穴势垒,对空穴的传输性降低,形成 P 型阻挡层。图为金属和 P 型半导体接触的能带结构。( a)P 型阻挡层( WM <WS)(b) P 型反阻挡层( WM >WS)图金属和 P 型半导体接触能带结构以上讨论的 4 种接触中,分别形成了阻挡层和反阻挡层。其中, WM >WS 时金属与 N 型半导体的接触和
8、 WM <WS 时金属与 P 型半导体的接触,分别在半导体表面形成了电子势垒和空穴势垒, 这类势垒对电荷传输都起到了阻挡作用, 换句形象生动的话叫载流子的运动需要 “爬坡”,因此这一类接触称为肖特基接触。而 WM<WS 时金属与 N 型半导体的接触和 WM >WS 时金属与 P 型半导体的接触成了反阻挡层,对电荷传输的影响极小,这一类接触称为欧姆接触。3. 表面态对肖特基势垒高度的影响从图和肖特基的计算式 qM=WM - =qVD+En 看,肖特基势垒高度貌似只与金属的功函数 WM 和半导体的电子亲和势 有关,而与金属和半导体接触界面的情况无关。表 1.2 给出了 N 型 G
9、e、Si、GaAs 与一些金属的接触的肖特基势垒高度 qM 1 。从表中可以看出Au 和 Al 与 GaAs 接触时,势垒高度相差0.15,但是, Au和 Al 的功函数相差 1.02eV,说明存在另外重要的因素影响了金属与半导体接触的肖特基势垒高度, 这个因素就是表面态, 关于表面态的理论虽然已现有, 但是并不能完全解释目前的实验结果,仍需要不断的完善。表 1.2N 型 Ge、 Si、 GaAs 与一些金属的接触的qM金属AuAlAgWPtWm/eV5.204.184.424.555.54N-Ge0.450.48-0.48-N-Si0.79-0.69-N-GaAs0.950.800.930.
10、710.944. 金属与半导体接触的 I-V 曲线不同类型的接触所形成的 I-V 曲线也不相同。 对于肖特基接触, 由于空间势垒的存在,使其性能类似与 PN 结,故其 I-V 曲线具有整流特性,如图。而对欧姆接触,反阻挡层的性质如同电阻, I-V 曲线表现出线性的关系, 如图。图肖特基接触I-V 曲线图欧姆接触 I-V 曲线5. 金属与半导体接触的 I-V 曲线测试方法及传输线模型( TLM )制作好金属电极及退火以后,都需要测定所得样品的I-V 性能。对不同的电学性能,电极电路的连接方式有所不同,首先为一个探针电极接触 ZnO/AZO 表面,另一个探针电极接触金属表面(如图 3.5(a)所示
11、),初步通过 I-V 曲线判断所获得的接触的类型。若获得的接触具有明显的整流特性,即如图 3.6( a)类似的形状,则可以判定为肖特基接触, 开始进行数据采集; 若获得的接触具有明显的线性关系,及如图 3.6(b)所示,则可以判定为欧姆接触,则需要用传输线模型法测定欧姆接触的比接触电阻。比接触电阻 c是表征金属与半导体欧姆接触质量的一个重要手段。所谓比接触电阻 c,即单位面积上金属与半导体接触2的微分电阻,单位是(· cm),由于金属与半导体的接触区一般包括一下几层:金属层、金属与半导体界面以及半导体层; 而且测量过程中还会引入各种寄生电阻,因此是目前无法直接测量比接触电阻。 现有的
12、测量方法是探针依次接触间距不同的金属电极(如图 3.5( b)所示),获得 I-V 曲线,通过计算获得比接触电阻。测量比接触电阻时,探针电极分别接触间距不同的金属电极,测定 I-V 曲线,参数设置为 -2V2V , 101 个数据点。( a)(b)图 3.5I-V 测试时,电极链接方式示意图( a)( b)图 3.6 I-V 测试曲线下面介绍传输线模型法测定比接触电阻 51-53 的基本原理和线性拟合公式的推导。矩形传输线模型及其等效电路如图 3.7。在一宽为 W 的样品上制作 46 个间距不相等的金属接触电极,电极尽力做到与样品等宽。探针( a)玻璃衬底WZnO/AZO金属电极L4LL2L1
13、( b)0XX+l 1X+l 2图 3.7 传输线模型示意图:( a)金属 -半导体接触的传输线模型, ( b)传输线模型的等效电路如果金属电极不能与样品等宽,则在通电流前需将样品进行边缘腐蚀处理,目的是保证载流子在电极间的平行方向上流动,同时与周围环境做到绝缘。 测量时,探针依次在间距不相等的长方形电极之间通恒定电流I,电压探针测量相应的电压 V,每对电极采取线性多点测量,最后通过拟合求出相应的总电阻 Rtot。(1)比接触电阻的推导根据 Kirchoff 定律,可得 x 与 x +l 之间的电压电流关系:?( ?+?) - ?(?) =?(?) ? =?(?) ?( 3.9)2?()( )
14、()? ?+ ?-? = ?(?) ?(3.10)?1?当 l0 时,由式( 3.9)和式( 3.10)可得dVI ( x)=?(3.11)dxWdI = V (x ) W(3.12)dx?将( 3.11)和( 3.12)两式合并,得:2 ( )( )? ?2(3.13)=?=2?(?)/?其中,? = ?为传输线的长度,? 为半导体薄膜层材料的方块电阻 ( Sheet?Resistance),即单位面积上的电阻值55。又sinh?( ?-?)I (x) = ?0 sinh?(?) (3.14)?且?-?()? ?cosh?( ? )? ? (3.15)V x= ?0 ?sinh?(? )?其
15、中, d 为接触宽度。由此可得接触电阻Rc:V( 0)Rc =I( 0)? ?=? ?=cosh?(? ) (3.16)?cosh( ? )?此处,将接触宽度d 取近似,使其满足条件d? ?,?从而,式( 3.16)转化为:Rc =?(3.17)?由此可得比接触电阻? 2 ?2?=?(3.18)?(2)比接触电阻的测量如图 3.7(a)所示,在相距 l 的两个长方形接触间通入恒定的电流 I ,并测出相应的电压 V,从而可以得出总电阻 Rtot:Rtot = 2? ?+ ? ?+ ?= 2?+ ?+ ?(3.19)?其中, Rp 表示钨探针的电阻值,此值相对较小,约为0.6,可忽略不计。式 3.19 变形为Rtot = 2Rc + ?(3.20)?对应不同距离的 Ln ,可测出一组 Rtot 的值,这里需要注意的是 Rtot 由两个欧姆接触电阻与接触之间的导电层串联电阻构成, 在通过进一步的数据处理, 继而可作出 Rtot=f( l)曲线,经过线性拟合,成为一条直线,如图 3.8 所示。Rtot斜率 =Rs/W2Rc0Ln图 3.8 传输线模型测量曲线式中, Rc 为总接触电阻, Rs 为欧姆接触之间的半导体薄层电阻。理论上 Rtot-Ln 曲线为一条直线,因此可用作图法求得接触电阻率。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学一年级上册-北师大版数学期中试卷(二)
- 全国学生竞赛试题及答案
- 妇女保健试题及答案高一
- 布艺温馨面试题目及答案
- 2024年纺织工程的基础知识试题及答案
- 2024年设计理论国际商业美术设计师考试试题及答案
- 商业AIGC擎舵-数字人
- 2024年广告设计师设计市场调研试题及答案
- 功能性纺织品的设计试题及答案
- 天津市专升本试题及答案
- 残疾人辅具申请
- MOOC 旅游学概论-中国地质大学(武汉) 中国大学慕课答案
- 2023人教版小学美术四年级上册期末试卷含部分答案(三套)
- 承包经营食堂日控管周排查月调度记录和管理表
- 培训课件:超前地质预报
- 留守儿童心理健康课件
- 跨国公司的外汇风险管理分析-以TCL科技为例
- hellp综合征护理课件
- 污水源热泵方案
- 《唐诗中的春夏秋冬》五年级下册诗词鉴赏一等奖课件
- 25题内控合规岗位常见面试问题含HR问题考察点及参考回答
评论
0/150
提交评论