依托问题情境-回归计算本质_第1页
依托问题情境-回归计算本质_第2页
依托问题情境-回归计算本质_第3页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、依托问题情境回归计算本质?乘法分配律?教学案例分析大悟县学校郭华一、研究背景2021年,我校开始围绕“数与代数领域中数的运算教学的有效性进展了 研究,我们重点对“合理处理算法多样和算法优化关系与策略研究进展了一 系列的探索。结合前阶段的研究成果,我们以?乘法分配律?为案例从学习容、 学生、教学活动几个方面进展了分析和探讨,以期待完善和形成合理处理算法 多样和算法优化关系的有效策略,实现运算教学的有效性。二、实施策略1、以现实情境呈现学习任务。2、引导学生活动自主建构模型。3、稳固练习提升学生应用实践能力。针对以上实施策略,我们进一步思考:1、怎样的情境能更有效地促进学生的学习?2、设计怎样的数

2、学活动才能帮助学生自主建构数学模型?3、怎样考虑应用与实践的容,确保学生的素养得到开展?三、案例分析1、关于学习容。?乘法分配律?是人教版义务教育课程标准实验教科书数学四年级下册第 三单元?运算定律与简便计算?中的第 5小节的学习容。五条运算定律在数学 中具有重要的地位和作用,被誉为“数学大厦的基石,乘法分配律即为其中 之一,也是学生最难学,教师最难教的一个容。1本节课对于学生数学学习的作用、价值。乘法分配律是运算教学中一个非常重要的容,学习乘法分配律有利于学生 积累探索数学规律的经验、感受不完全归纳法,又有利于学生开展符号感,进 一步感受数学表达的严谨与简练,学习乘法分配律,有利于提高学生的

3、观察能 力,比较能力和概括能力;学习乘法分配律是学生以后进展简便计算的前提和 依据,对提高学生的计算能力有着重要的作用;学习乘法分配律还是学生后续 学习知识的重要根底。2本节课在相应知识体系中的地位。a、乘法分配律与“数与代数领域间的关系;b、知识的纵向比较:教材把乘法分配律这一节容编排在?运算定律与简便计算?这一单元第5小节,便于学生感悟知识之间的在联系与区别,有利于学生通过系统学习,建 构比较完整的知识结构,在以前学生学习的过程中,有许多地方体会过乘法分 配律,如:计算长方形的周长;应用题的解答中,要求学生用两种方法解答; 在笔算乘法中,把乘法转化成几个乘积相加的和在这些知识的学习过程中,

4、 都向学生孕伏了乘法分配律的思想,乘法分配律也为整数、小数、分数的简便 计算、解方程、求环形面积、合并同类项,代数式化简,复杂的代数运算等等提供了理论支持,因此,学习乘法配律是至关重要的,当然这时乘法分配律已 到呼之欲出的阶段。认知根底自主建构实践应用长方形周长解决问题笔算乘法 a 士 b) x c=a x c 士 b x-r*简便计算解方程 合并同类项c、知识的横向比较在五条运算定律中,乘法的交换律、结合律、与加法的交换律、结合律一 样,都是同一种运算的规律,只有乘法分配律,沟通了乘法与加、减法之间的 联系,因而更加复杂,是运算教学的一大难点。运算定律加法交换律a+b=b+a结合律(a+b)

5、+c=a+(b+c)乘法交换律ax b=bx a结合律(a x b) x c=ax (b xc)分配律(a ± b) x c=ax c ± bx c3本节课的数学涵、相应的知识技能、所承载的数学思想与方法。 数学中,研究数的运算,在给出运算的定义后,最主要的根底工作就是研 究该运算的性质,在运算各种性质中,最根本的几条性质,通常称为“运算定 律,也就是说,运算定律是运算体系中具有普遍意义的规律,是运算的根本 性质,可作为推理的依据,如根据运算定律来证明运算的其他性质,根据运算 定律和性质来证明运算法那么的正确性等等。乘法分配律建立了乘法与加减法运算之间的联系能由a士 b)

6、x c 转化成a x c± bx c也能由 a x c士 bx c 转化成a士 b) x c向学生渗透了互化、转化的数学思想,在学生自主建构模型过程中所经历的猜想、验证,不完全归纳法等等都是今后学生学习数学根本的思想与方法。2、关于学生1学生对该学习容、在知识与生活等方面有一定的经验。a、初步理解四那么运算的意义。b、知道四那么混合运算的运算顺序。c、学习了交换律、结合律,经历了用字母表示运算定律的过程。d、能用两种方法解决实际问题。e、在以前学习过程中有一些零碎的乘法分配律的表象认识。前测试题正确率错误情况一件上衣60兀,一条裤子50兀,买5 套衣服一共花多少钱?(用多种方法解答)

7、95%只会用一种方法5%有2件不同的上衣,2条不同的裤子, 搭配成一套衣服,有几种搭配的方案?90%不能说出所有搭配方法10%37 x 29+37x 7195%计算正确但没有使用简便算法90%25 x 40+487.5%计算正确但没有使用简便算法97.5%2学生学习该容可能存在的困难根据我们对教材的研读和对学生的研究,我们进展了第一次实践。教师向学生展示了植树情境图,25个小组,每组里4人负责挖坑、种树,2人负责抬 水、浇水。一共有多少名同学参加这次植树活动?让学生找出图中相关信息, 独立列式并交流不同算法的解题思路。在理解的根底上用等号连接两个算式, 并引导学生比较等号两边的算式有什么一样点

8、和不同点。接着让学生总结规律, 知道这就是乘法分配律,然后做课后习题。通过第一次试教,我们发现学生学 习乘法分配律的困难如下:a、学习迁移上的困难:从学生学习过程看,大局部学生都能用两种方法列 出算式并计算,但学生观察算式发现规律时,大多数学生感到困难,无法建立 起两种运算之间的完整联系。b、学生表达上的困难:通过教师引导,学生发现了规律,但表达起来比较 费力,不能表述出规律的关键。c、学生互化上的困难:a 士 b x c=ax c 士 bx ca x b 士 c =a x b士ax c 学生容易承受。a x c士 bx c= a 士 b x c a x b士 ax c =a x b 士 c学

9、生却不易承受。d、学生应用上的困难。学生能用两种方法解决实际问题, 实现了算法多样化的目的,但要选择算法优化学生有一定困难后期测试题目正确率错误情况25 x 40+490%没有使用简便算法10%35 x 20175%没有使用简便算法25%125x 88- 125 x 867.5%没有使用简便算法32.5%39x 8+6x 39- 39x 425%没有使用简便算法50%从学生的学习结果来看,学生对乘法分配律的错误主要有以下几种情况,没有形成简算的意识,用错乘法分配律。3对学生学习困难的分析与思考:a、无论是将乘法分配律用错,还是没有使用乘法分配律,都反映出学生 对这一容没有理解透彻。b、没有理解

10、透彻的原因又是什么?我们是不是过分依靠教材,只注重了 外在形式的观察,而无视了对本质的理解?所谓理解,就应该是将新知识与已 有知识经验发生联系,并且用已有知识经验来解释新知的过程,那么,怎样唤 起学生的已有经验,为新知的学习架起一座桥梁呢?3、关于教学活动:1第一次试教后,我们对学生进展了后期测试,发现 90%以上的学生没 有植树经历。在第一次教学与反思的根底上,我们进展了第二次教学尝试。从 情境入手,根本思路是:情境表象规律。一件上衣60元,一条裤子50元,买5套衣服一共花多少钱?X5+50 X 560+50X 560= 110 X 5=300+250=550元=550通过买衣服的情境建立等

11、式两边的联系,买衣服的经历,情境帮助学生理 解了抽象的教学容,使学生对乘法分配律不再是机械地认识。但是,在教学中 仍发现,在经历了感知后,学生对乘法分配律的理解仍然只是一个表象的认识, 在后期测试中,和第一次教学实践相比,学生掌握知识情况有所好转,但不明 显。那么终究怎样才能突破让学生尝试从乘法的意义角度理解乘法分配律这一 教学难点呢?2我们尝试了第三次教学。根本思路是:情境表象算理规 律一一实践。我们对情境导入这样思考,什么样的情境更具现实性,更富有 挑战性,什么样的情境更有利于学生主动地进展观察、比较、猜想、验证、推 理、交流等数学活动呢?我们是这样选择情境导入的:播放课堂实录45+15X

12、 5=45X 5+15X 545+10X 5=45X 5+10X 545+20X 5=45X 5+20X 520+15X 5=20X 5+15X 52O+1OX 5=20X 5+10X 51O+15X 5=10X 5+15X 5从一件上衣一条裤子到三件上衣,二条裙子的改编,更有利于学生进展自 主选择,从原来的单一的一个等式到六个等式,拓宽了学生的解题思路,开展 了学生思维,学生通过选择喜欢的方案,用多种方法解答,体验了解决问题的 多样性,表达了学生的个性开展,同时建立了等式之间的联系,在汇报的过程 中,要求学生说出算理,灵活的引导学生发现了乘法分配律的在规律,帮助他 们理解了乘法分配律概念的涵

13、。从而提高了教学效率。 在学生经历了大量感知后,我们设计了第二个教学活动。活动要求:a、写出三个这样的算式。b、你怎么来说明你写的算式左右两边是相等的。c、汇报不同的算式。在这个教学环节中,我们让学生探究、质疑,当学生交流时,我们又遇到 了新的困惑,学生很难用语言说清楚等式左右两边为什么是相等的,还沉浸在具体情境中,教师还要从算理的高度对学生引导,如45X 5+15X 5=(45+15) X 5左边45个5加15个5是60个5,右边也是60个5,让学生从乘法的意义的角度 来理解。帮助学生把零散的感性认识上升为理性认识,从具体到抽象,从现象 到本质,让学生自主建构乘法分配律定律,到达了一个更高的

14、数学层次。 最后一个教学环节,应用算理,回归计算本质。对小学生来说,乘法分配律的运用具有一定的灵活性,对数学能力的要求 较高,这是问题的一个方面。另一方面,乘法分配律的运用也为培养和开展学 生思维的灵活性提供了极好的时机,应用乘法分配律时,应注意表达算法多样 化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。解决实际问题1、师徒两人合做一批零件,师傅每小时做 30个,徒弟每小时做25个,4 小时共做多少个零件?用多种方法解答2、一辆小汽车和一辆货车在甲、乙两地同时相向而行,小汽车每小时行66千米,货车每小时行34千米,8小时它们相遇。甲乙两地相距多少千米?用简便算法3、在填上适当

15、的数.(15+20) X 12=()X 12+()X 1225 X (4+9)=()X 4 +()X 98X (10+5)=()X ( )+()X ()75 X 24= 75 X ()+75X()4、连线48 X 12+52 X 1215X18+26 X 18(15+18) X 2625X40+25 X425 X (40+4)(48+52)X 1214 X (45-5)11X4+25 X4(11 X 25) X 414X 45-14 X 5相比前几次教学,教学效果有了显著改善。后期测试题目正确率错误情况25 X 40+497.5%没有使用简便算法2.5%35 X 20192.5%没有使用简便算

16、法7.5%125X 88- 125 X 885%没有使用简便算法15%39X 8+6X 39- 39 X 482.5%没有使用简便算法17.5%通过我们对?乘法分配律?的研讨,我们发现在数的运算教学中:1、依托问题情境,化新知。新课标鼓励教师要创造性地使用教材,这给我们很大的自主权,我们在认 真研读教材、分析学情的情况下,选择学生熟知的生活情景导入,激活了学生 已有的知识经验,为新知的学习扫除了思维上的障碍,为学生有效建构提供了认知根底。最大限度地发挥了学习材料的有效性。2、优化数学活动,有效建构。优化数学活动不能单纯依赖模仿与记忆,动手实践、自主探究、合作交流 是学生学习数学的重要方式。因此,我们在组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论