




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆的面积 教学实录教学内容: 圆的面积。教学目标:1. 通过观察 、操作、分析,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。3. 渗透转化的数学思想和极限思想。教学重点:1、正确计算圆的面积。2、理解圆的周长和半径与转转化后近似长方形的长和宽的关系。3、利用转化思想进行面积公式的推导。教学难点:圆面积公式的推导并能利用公式灵活的运用公式进行计算。教具准备:多媒体课件,圆片、纸板、剪刀。学具准备:把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。(二)教学过程:一、
2、复习旧知,导入新课师:同学们:上一节课我们学习了圆的周长,谁知道圆的周长的计算公式?生: 圆的周长=圆周率 ×直径 用字母表示S=d或2r师:能用你学过的知识解决下面的问题吗?试试看1. 一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?生:圆形桌布的周长师:2.出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?生:圆的面积师: 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸学具圆的面积。师:3. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研
3、究怎样计算圆的面积。(板书课题:圆的面积)二、动手操作,第一次探究,明确思路,体会“转化”的数学思想方法1、圆面积概念。师:请你想一想,什么是圆的面积呢? 用手摸一摸玻璃的大小生:圆的大小就是圆的面积。2、唤醒记忆,实现方法迁移。师:就是说圆所占平面的大小就是圆的面积。那怎么求圆的面积呢? (学生沉默)大家好像遇到了困难,请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?生:可以把新图形转化成已学过的图形,比如平行四边形可以通过剪拼转化成长方形求出面积。3、布置第一次探究任务。师:那圆能不能转化成我们学过的图形呢?生:(能)4、请你用手中的工具、圆纸片试一试。5、学生活动
4、,教师巡视(约五分钟)。6、学生反馈。师:刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。生1:我们把圆纸片对折得到4个扇形,求出一个扇形的面积,但是扇形面积不会求,可以再继续折。师:你们折成4个扇形后,为什么还要继续折?师:看来你们已经发现问题了,继续折,折成的图形就更像三角形了。(把学生的作品贴在黑板上)师:这种方法多好呀,有的小组采用的方法不一样,也请他们上来展示一下。生2:我们把一个圆剪成4个相等的扇形,把这些扇形重新拼一拼,拼出的图形有些像平行四边形。(老师也把学生的作品贴黑板上)师:这个小组很有创意,把圆剪成4份,又
5、重新拼成了新的图形(板书:剪拼),刚才拼出的图形像平行四边形吗?生:不像。7、方法比较。师:有点轮廓了,看来要怎么让拼出的图形更像一个平行四边形,值得研究。刚才我们有两种思路,可以把圆折一折,转化成三角形;也可以通过剪拼把圆转化成平行四边形。这两种思路有什么共同点?生:都是想把圆这个新图形转化成已经学过的图形求出面积。三、第二次探究,明确方法,体验“极限思想”1、布置第二次研究任务。师:刚才我们发现不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢?值得我们继续研究研究,请每个小组在两种思路中选择一种继续研究。2、小组合作,教师巡视指导。3、学生反馈。师:各个小组都研究出结果
6、了,谁想先来展示一下?请你们小组先说。生1:我们把圆对折平均分成16份,折出的形状很像是三角形。师:为什么要折这么多份?生:因为折成4份的话,折出的形状是扇形,和三角形相差太大。折的份数越多,折出的形状越像三角形。师:把一个圆对折平均后16份的形状,确实更像三角开了,能让折成的图形更像三角形吗?生:折成32份。师:你再折试试看。生:(不动)师:看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化? (课件演示正32边形,并突出其中一份的形状。)师:如果折成6
7、4份、128份闭上眼睛想一下,会怎么样?师:大家请看屏幕,把圆平均分成4份,其中的一份和三角形差得确实比较大。请大家观察把圆继续分下去时会发生什么变化。(利用课件从4份开始演示,分的份数逐渐增加。)生: (感觉很神奇)越来越接近三角形了。师:和大家想的一样,把圆分的份数越多,其中的一份越接近三角形。三角形的底可以看成这段弧,三角形的高可以看成是圆的半径。你们会求三角形的面积吗?生:能?师:用这个方法,我们成功地把求圆转化成三角形,求出了圆的面积。刚才有的小组方法不一样,上来说一说。生2:我们把圆平均分成8份,剪下来是8个近似的三角形,拼在一起是个近似的平行四边形。师:(把这个小组的作品贴在黑板
8、上),和刚才剪成4份拼成的图形相比,有什么变化呢?生:更像了。师:能更像吗?有的小组有新的方法了。生3:我们把圆剪成16份,拼成了平行四边形。(把这个小组的作品贴在黑板上。)师:和前两次拼成的图形比,又有什么变化?生4:更像平行四边形了。师:这两种和刚才第一种比,更像平行四边形了,如果还要更像呢?怎么办?生4:可以继续分下去,分成32份。师:再像呢?生:把圆平均分成64份,128份师:现在如果老师让你把圆剪成128份,有什么感觉?生:太麻烦了。师:我们让电脑来帮忙。大家看,老师在电脑上把这个圆平均分了32份,看拼成新的图形,你有什么发现呢? (课件演示。)生:拼成的图形更接近于平行四边形。师:
9、如果把圆平均分成64份呢? (课件演示。)生:更接近于平行四边形了,有些像是长方形了。师:把圆平均分成64份,拼成的图形有些像长方形了。大家想象一下,如果把圆分的份数再多呢?生:拼成的图形更接近长方形。师:大家请看屏幕(课件演示),把圆平均分成128份,拼成的图形看起来很像长方形了,分的份数再多呢?生:简直就是长方形了。师:把圆剪一剪、拼一拼,得到的图形越来越接近于长方形。这样就把求圆的面积转化成了求长方形的面积。我们把圆转化成了长方形,形状变了,什么没变呢?生:面积。师:只要求出长方形的面积,就可以求出圆的面积。四、第三次探究,深化思维,推导公式1、布置第三次探究任务。师:刚才同学们借助学具
10、通过动手操作,找到了解决问题的方法。可以折一折,也可以剪一剪、拼一拼,得到学过的图形。但数学学习不能仅停留在动手操作上,还要借助数字、字母和符号等进行动脑思考和推理。现在,老师想给大家提个更高的要求:能不能在动脑思考的基础上推导出圆的面积计算公式呢?生:能师:刚才大家利用圆纸片折的、剪拼的图形都不太标准,老师给大家准备了屏幕上呈现的这两种方法的示意图帮助你思考,大家可以对照示意图把推导的过程写在图的下面。2、教师按照每个小组选择的方法分发学具。学生讨论,教师巡视指导。3、学生反馈。师:这个小组迫不及待地想展示他们推导的结果了,我们一起来看看。生1: (剪拼法)把圆剪一剪、拼一拼变成了长方形,它
11、们的面积是相等的。长方形的长相当于圆周长的一半,用C÷2=r表示,宽相当于半径,用r表示。长方形的面积=长×宽,圆的面积=r×r=r² (实物投影呈现)。师:大家听清楚了吗?谁愿意再起来说一说。师: (边讲边板书)老师也听明白了,把圆转化成长方形,面积是相等的。长方形的长相当于圆周长的一半,宽相当于半径,因为长方形的面积=长×宽,所以圆的面积=r×r=r²。现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?生:圆的半径。师:你们表现得真好,我们再来听一听这个小组的想法。生2:圆的面积=C÷32×r÷2×32=2r×r÷2=r²。师:你们的式子还挺复杂,能说一说每一步表示什么吗?4、反思小结师:你们可真聪明呀,刚才两个小组推导的结果都是r²,圆的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度联营股本借款合同全文
- 2025铝合金门窗制作合同
- 2025商务合作合同模板
- 2025全新版委托维修合同
- 2025年签订股权转让合同的要点分析及合同范本
- 2025年上海房屋租赁合同范本
- 2025年:探讨合同规范化管理对企业发展的长远意义
- 《危重患者的观察要点》课件
- 《艺术史概述:唐宋元明清》课件
- 《供应链管理》课件
- 冶金过程优化-洞察分析
- 人教版四年级下册数学第三单元《运算律》(同步练习)
- 企业员工心理健康促进方案
- 妇产科护理学练习题(附参考答案)
- 电力建设项目工程结算编制讲义
- 顶管工程验收表
- 【MOOC】中国近现代史纲要-浙江大学 中国大学慕课MOOC答案
- GB/T 21477-2024船舶与海上技术非金属软管组件和非金属补偿器的耐火性能试验方法
- 设备运输包装方案
- 高中信息技术《走近人工智能》教学设计
- 第八章 坚持以促进国际安全为依托-国家安全教育大学生读本教案
评论
0/150
提交评论