第一章三角计算及其应用的解读_第1页
第一章三角计算及其应用的解读_第2页
第一章三角计算及其应用的解读_第3页
第一章三角计算及其应用的解读_第4页
第一章三角计算及其应用的解读_第5页
已阅读5页,还剩24页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章第一章 三角计算及三角计算及其应用的解读其应用的解读2012年3月瑞安市职业中专 唐荣洲2主要内容主要内容 教材的定位教材的定位 教学要求教学要求 教学内容教学内容 教学建议教学建议3教材的定位教材的定位 三角计算是中学数学的重要内容之一,它源于三角计算是中学数学的重要内容之一,它源于测量,是测量学的理论基础。三角计算是相关测量,是测量学的理论基础。三角计算是相关专业课程学习的基础(如交流电、简谐振动等),专业课程学习的基础(如交流电、简谐振动等),同时它也是研究自然界周期现象的重要数学工具。同时它也是研究自然界周期现象的重要数学工具。在本章中,通过三角计算的应用和阅读材料的学在本章中,

2、通过三角计算的应用和阅读材料的学习,体会到在解决有关实际问题中的作用。习,体会到在解决有关实际问题中的作用。4教学要求教学要求1.掌握和角公式及倍角公式掌握和角公式及倍角公式,能利用和角公式与能利用和角公式与倍角公式求特殊角的三角函数值。会证明简单倍角公式求特殊角的三角函数值。会证明简单的三角恒等式。的三角恒等式。2.在熟练掌握正弦函数的性质和图象,理解周期函数在熟练掌握正弦函数的性质和图象,理解周期函数与最小正周期的意义的基础上,掌握正弦型函数与最小正周期的意义的基础上,掌握正弦型函数y=Asin(wx+q)的性质与图象。会用的性质与图象。会用“五点法五点法”画画正弦型函数和余弦型函数的简图

3、。正弦型函数和余弦型函数的简图。3.理解正弦定理、余弦定理,能初步运用它们解斜三角形。理解正弦定理、余弦定理,能初步运用它们解斜三角形。4.会应用三角计算解决一些生产、生活中简单的实际问题。会应用三角计算解决一些生产、生活中简单的实际问题。5教学内容教学内容本章目录本章目录知识结构和课时安排知识结构和课时安排与原教材相关内容的比较与原教材相关内容的比较6目录目录第一章第一章 三角计算及其应用三角计算及其应用1.1 两角和的余弦、正弦公式两角和的余弦、正弦公式1.2 正弦型函数正弦型函数y=Asin(wx+Q)1.3 余弦定理、正弦定理余弦定理、正弦定理1.4 三角计算的应用三角计算的应用阅读材

4、料阅读材料 潮汐的三角函数模型潮汐的三角函数模型7与原教材相关内容的比较与原教材相关内容的比较1、少了两角和与差的正切、倍角中的正切公式、少了两角和与差的正切、倍角中的正切公式、三角形的面积公式。三角形的面积公式。2、增加了三角计算的应用和阅读材料、增加了三角计算的应用和阅读材料(潮汐的三角函数模型),以及在内容的编排上有所改变(潮汐的三角函数模型),以及在内容的编排上有所改变(如和角公式的证明,本章节安排在知识延伸内)。(如和角公式的证明,本章节安排在知识延伸内)。3、在正弦型函数、在正弦型函数 这一节中,主要讲这一节中,主要讲正弦型函数,删除了余弦型函数,突出用计算器和数学软件正弦型函数,

5、删除了余弦型函数,突出用计算器和数学软件作出正弦型函数的图象,从而来研究它的性质。作出正弦型函数的图象,从而来研究它的性质。)sin(xAy8课时安排课时安排本章教学约需本章教学约需16课时,具体分配如下(仅供参考):课时,具体分配如下(仅供参考):1.1.1 两角和的余弦、正弦公式两角和的余弦、正弦公式 3课时课时1.1.2 二倍角公式二倍角公式 2课时课时1.2 正弦型函数正弦型函数 4课时课时1.3.1 余弦定理余弦定理 2课时课时1.3.2 正弦定理正弦定理 1课时课时1.4 三角计算的应用三角计算的应用 2课时课时 小结与复习小结与复习 2课时课时)sin(xAy9教学要求、重点、难

6、点教学要求、重点、难点重点:正弦、余弦的和角公式,正弦曲线的画法重点:正弦、余弦的和角公式,正弦曲线的画法和正弦型函数的性质,余弦定理、正弦定理和解和正弦型函数的性质,余弦定理、正弦定理和解斜三角形。斜三角形。难点:正弦型函数难点:正弦型函数 的图象。的图象。)sin(xAy在本章的教学中,要注意结合教学内容作好数学在本章的教学中,要注意结合教学内容作好数学基本思想方法的培养,例如渗透集合与对应、数形基本思想方法的培养,例如渗透集合与对应、数形结合、函数等基本数学思想方法。要注意培养学生结合、函数等基本数学思想方法。要注意培养学生分析、探索、化归和类比的思想方法,同时作好平行分析、探索、化归和

7、类比的思想方法,同时作好平行移动、伸长和缩短等基本方法的教学。移动、伸长和缩短等基本方法的教学。10教学建议教学建议 两角和的余弦、正弦公式两角和的余弦、正弦公式 二倍角公式二倍角公式 正弦型函数正弦型函数 余弦定理的教学余弦定理的教学 正弦定理的教学正弦定理的教学 三角计算的应用三角计算的应用)sin(xAy11两角和的余弦、正弦公式两角和的余弦、正弦公式两角和与差两角和与差的余弦的余弦公式公式证明证明解决二类问解决二类问题题12教学要求教学要求1、结合具体实例,使学生认识到求两角和与差、结合具体实例,使学生认识到求两角和与差的正弦、余弦公式的必要性和实际意义。的正弦、余弦公式的必要性和实际

8、意义。2、使学生经历由两角差的余弦公式导出两角和、使学生经历由两角差的余弦公式导出两角和与差的正弦、余弦公式的探究过程,培养学生的与差的正弦、余弦公式的探究过程,培养学生的探索精神。探索精神。3、掌握两角和与差的正弦、余弦公式,能运用、掌握两角和与差的正弦、余弦公式,能运用公式解决基本的三角函数式的化简、求值、证明等。公式解决基本的三角函数式的化简、求值、证明等。13教学重点:两角和与差的正弦、余弦公式及其应用。教学重点:两角和与差的正弦、余弦公式及其应用。教学难点:探索过程的组织和引导,运用已学知识教学难点:探索过程的组织和引导,运用已学知识和方法解决问题。和方法解决问题。教学建议教学建议1

9、41、在两角和与差的余弦公式给出之前,可以让学生讨论、在两角和与差的余弦公式给出之前,可以让学生讨论cos(a+b)=cosa+cosb是否成立?是否成立?2、对公式的证明,本章把它放在了知识延伸中,在课堂的、对公式的证明,本章把它放在了知识延伸中,在课堂的教学中尽量予以证明。它采用的方法还是用向量方法来证明,教学中尽量予以证明。它采用的方法还是用向量方法来证明,所以有必要对相关知识进行复习。所以有必要对相关知识进行复习。3、在两角差的余弦公式和两角和与差正弦公式、在两角差的余弦公式和两角和与差正弦公式教学中,建议教师先复习相关的诱导公式。教学中,建议教师先复习相关的诱导公式。4、对例题的教学

10、中,建议教师增加公式的逆用,、对例题的教学中,建议教师增加公式的逆用,以培养学生的逆向思维能力。以培养学生的逆向思维能力。15二倍角公式二倍角公式公式公式证明证明应用应用二倍角公式二倍角公式16教学要求教学要求1、能从和角公式出发推导出二倍角的公式,理解、能从和角公式出发推导出二倍角的公式,理解它们的内在联系,从中体会数学的化归思想和数学它们的内在联系,从中体会数学的化归思想和数学规律的发现过程。规律的发现过程。2、掌握二倍角公式,通过对倍角公式的正用、逆用、掌握二倍角公式,通过对倍角公式的正用、逆用变形使用,提高三角变形的能力,以及应用转化、变形使用,提高三角变形的能力,以及应用转化、化归、

11、换元等数学思想方法解决问题的能力。化归、换元等数学思想方法解决问题的能力。17教学建议教学建议1、教学时,应通过练习,使学生理解、教学时,应通过练习,使学生理解“二倍角二倍角”概念的相对性。概念的相对性。2、在教学中,应该加强公式的逆用和变着用。、在教学中,应该加强公式的逆用和变着用。教学重点:二倍角公式及其应用。教学重点:二倍角公式及其应用。教学难点:对教学难点:对“二倍二倍”理解以及逆向运用二倍角公式。理解以及逆向运用二倍角公式。18)sin(xAy正弦型函数正弦型函数正弦型函数正弦型函数问题问题概念概念图象图象性质性质应用应用19教学要求教学要求1、了解、了解 的实际意义,理解参数的实际

12、意义,理解参数q,w,A对对 的图象的影响,理解的图象的影响,理解y=sinx的图象的图象与与 的图象之间的变换关系。的图象之间的变换关系。2、通过本节的学习,体会从特殊到一般,从具体、通过本节的学习,体会从特殊到一般,从具体到抽象的数学思想方法。到抽象的数学思想方法。)sin(xAy)sin(xAy)sin(xAy教学重点:正弦型函数的图象和性质教学重点:正弦型函数的图象和性质教学难点:正确地画出正弦型函数的大致图象教学难点:正确地画出正弦型函数的大致图象和图象变换与函数解析式变换的内在联系的理解。和图象变换与函数解析式变换的内在联系的理解。20教学建议教学建议1、在本节教学前先复习正弦函数

13、的图象和性质,、在本节教学前先复习正弦函数的图象和性质,让学生熟悉和掌握研究函数的过程和方法。让学生熟悉和掌握研究函数的过程和方法。2、对、对y=Asinx, y=sin x, y=sin(x+ )与与y=sinx图象之间图象之间的关系要研究透,作图过程不宜太快,数量也不宜太少,这样的关系要研究透,作图过程不宜太快,数量也不宜太少,这样可以提高学生的作图能力,特别是可以提高学生的作图能力,特别是“五点法五点法”作简图。作简图。3、对、对y=Asin( x+ )的性质,重点讲最值和周期。的性质,重点讲最值和周期。4、掌握运用平移变换和伸缩变换把、掌握运用平移变换和伸缩变换把y=sinx的图象的图

14、象变换为变换为y=Asin( x+ )的图象的方法的图象的方法.21余弦定理余弦定理余弦定理余弦定理导入导入证明证明解决二类问解决二类问题题22 教学要求教学要求1、了解利用向量证明余弦定理,掌握余弦定理及其、了解利用向量证明余弦定理,掌握余弦定理及其变形。变形。2、会利用余弦定理证明简单三角形问题,求解简单、会利用余弦定理证明简单三角形问题,求解简单斜三角形边角问题。斜三角形边角问题。3、培养学生的数形结合的思想和归纳的能力。、培养学生的数形结合的思想和归纳的能力。教学重点:余弦定理及其应用。教学重点:余弦定理及其应用。教学难点:余弦定理的证明。教学难点:余弦定理的证明。23 1、在引入的设

15、计上,力求让学生体会到研究余弦定理、在引入的设计上,力求让学生体会到研究余弦定理的必要性,体现了余弦定理是勾股定理的推广。的必要性,体现了余弦定理是勾股定理的推广。教学建议教学建议2、在例题的教学中,建议增加两种类型的例题、在例题的教学中,建议增加两种类型的例题(求三角形的最大(小)角、判断三角形的形状等),(求三角形的最大(小)角、判断三角形的形状等),因为课后的习题和练习中有这样的题型。因为课后的习题和练习中有这样的题型。24对正弦定理的教学对正弦定理的教学正弦定理正弦定理定理定理证明证明解决二类问解决二类问题题25教学要求教学要求1、通过已学过的直角三角形的边角关系,特别是、通过已学过的

16、直角三角形的边角关系,特别是在直角三角形中正弦与边之间的关系,探讨一般在直角三角形中正弦与边之间的关系,探讨一般三角形中角的正弦与边之间的关系,掌握正弦定理三角形中角的正弦与边之间的关系,掌握正弦定理,能根据定理解决三角形中的简单问题。,能根据定理解决三角形中的简单问题。2、培养学生的联想和合情推理的能力,以及转化、培养学生的联想和合情推理的能力,以及转化的思想。的思想。教学重点:正弦定理及其应用。教学重点:正弦定理及其应用。教学难点:正弦定理的猜想和证明。教学难点:正弦定理的猜想和证明。261、增加导入:、增加导入: 利用直角三角形利用直角三角形ABC,具有角与边的关系:,具有角与边的关系: 猜想锐角三角形与钝角三角形是否成立猜想锐角三角形与钝角三角形是否成立?CcBbAasinsinsinABCbac教学建议272、定理的证明,对成绩比较好的学生可以、定理的证明,对成绩比较好的学生可以把斜三角形转化为直角三角形的方法来证把斜三角形转化为直角三角形的方法来证明。明。3、在讲解例、在讲解例2和例和例3时,让学生充分的体会时,让学生充分的体会到已知两边和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论