函数的单调性_第1页
函数的单调性_第2页
函数的单调性_第3页
函数的单调性_第4页
函数的单调性_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、函数的单调性函数的单调性北京市苹果园中学北京市苹果园中学毕烨毕烨 学生情况分析学生情况分析2 2教学目标分析教学目标分析3 3教学重难点分析教学重难点分析4 4教学内容分析教学内容分析1 1教学方法分析教学方法分析5 5教学过程设计教学过程设计6 6 学生情况分析学生情况分析2 2教学目标分析教学目标分析3 3教学重难点分析教学重难点分析4 4教学内容分析教学内容分析1 1教学方法分析教学方法分析5 5教学过程设计教学过程设计6 61.1.教材内容教材内容(教材位置,课时设置)(教材位置,课时设置)数学数学 必修一必修一B B版版 第二章第一节第二章第一节共共2 2课时,本节课为第课时,本节课

2、为第1 1课时课时2.2.教材的地位和作用教材的地位和作用单调性本身单调性本身初中初中初步感性初步感性认识认识高一高一单调单调性性严严格定格定义义高三高三导数与单调导数与单调性性单调性单调性2.2.教材的地位和作用教材的地位和作用本章节教学本章节教学对函数概念的对函数概念的延续和扩展延续和扩展为研究其他性质为研究其他性质起示范作用起示范作用后续研究函数后续研究函数的基础的基础函数知识网络函数知识网络 对初中深化,从感性到理性对初中深化,从感性到理性承上承上为后续学习打下基础为后续学习打下基础启启下下2.2.教材的地位和作用教材的地位和作用2.2.教材的地位和作用教材的地位和作用高中数学学习高中

3、数学学习数形结合思想数形结合思想研究函数性质的有力工具研究函数性质的有力工具 学生情况分析学生情况分析2 2教学目标分析教学目标分析3 3教学重难点分析教学重难点分析4 4教学内容分析教学内容分析1 1教学方法分析教学方法分析5 5教学过程设计教学过程设计6 6简单函数、函数概念表示、函数图象、增减性简单函数、函数概念表示、函数图象、增减性知识结构知识结构能力结构能力结构学习心理学习心理本班特点本班特点观察事物能力,抽象归纳的能力和语言转换能力观察事物能力,抽象归纳的能力和语言转换能力渴望进一步学习的积极心态渴望进一步学习的积极心态理科实验班,数学素养较好理科实验班,数学素养较好 学生情况分析

4、学生情况分析2 2教学目标分析教学目标分析3 3教学重难点分析教学重难点分析4 4教学内容分析教学内容分析1 1教学方法分析教学方法分析5 5教学过程设计教学过程设计6 6 (1 1)从形与数两方面理解单调性的概念)从形与数两方面理解单调性的概念 (2 2)绝大多数学生初步学会利用函数图象)绝大多数学生初步学会利用函数图象和单调性定义判断、证明函数单调性的方法和单调性定义判断、证明函数单调性的方法 1 1、知识与技能:、知识与技能: (1 1)通过对函数单调性定义的探究,提高)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通观察、归纳、抽象的能力和语言表达能力;通过对函

5、数单调性的证明,提高推理论证能力过对函数单调性的证明,提高推理论证能力 (2 2)通过对函数单调性定义的探究,体验)通过对函数单调性定义的探究,体验数形结合思想数形结合思想 (3 3)经历观察发现、抽象概括,自主建构)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程殊到一般,从感性到理性的认知过程2 2、过程与方法:、过程与方法:通过知识的探究过程培养细心观察、认真分通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯;感受用辩证析、严谨论证的良好思维习惯;感受用辩证的观点思考问题的观点

6、思考问题3 3、情感态度价值观:、情感态度价值观: 学生情况分析学生情况分析2 2教学目标分析教学目标分析3 3教学重难点分析教学重难点分析4 4教学内容分析教学内容分析1 1教学方法分析教学方法分析5 5教学过程设计教学过程设计6 6教学重点:教学重点: 函数单调性的概念形成和初步运用函数单调性的概念形成和初步运用教学难点:教学难点: 函数单调性的概念形成函数单调性的概念形成 学生情况分析学生情况分析2 2教学目标分析教学目标分析3 3教学重难点分析教学重难点分析4 4教学内容分析教学内容分析1 1教学方法分析教学方法分析5 5教学过程设计教学过程设计6 6普通高中数学课程标准普通高中数学课

7、程标准(实验实验)指出:指出:“高中数学课程应倡高中数学课程应倡导自主探索等学习数学的方式,这些方式有助于发挥学生学导自主探索等学习数学的方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的习的主动性,使学生的学习过程成为在教师引导下的再创再创造造过程。过程。” 教学方法:教学方法:启发式教学法和学生探究式教学法启发式教学法和学生探究式教学法 学生情况分析学生情况分析2 2教学目标分析教学目标分析3 3教学重难点分析教学重难点分析4 4教学内容分析教学内容分析1 1教学方法分析教学方法分析5 5教学过程设计教学过程设计6 6创设情境创设情境引入新课引入新课初步探索初步探

8、索概念形成概念形成概念深化概念深化延伸拓展延伸拓展证法探究证法探究应用定义应用定义小结评价小结评价作业创新作业创新创设情境创设情境引入新课引入新课数学课程标准中提出数学课程标准中提出“通过已学过的函数特通过已学过的函数特别是二次函数理解函数别是二次函数理解函数的单调性的单调性”xyy=2xO 112-12-1-2-2yy= -2xO 112-12-1-2-2xxyy=x2+1O11问题问题1:分别作出函数:分别作出函数y=2x,y=-2x和和y=x2+1的图的图象,并且观察函数变化规律?象,并且观察函数变化规律? 增函数、减函数增函数、减函数单调性是局部性质单调性是局部性质? ?问题问题2创设

9、情境创设情境引入新课引入新课初步探索初步探索概念形成概念形成xyy=x2+1O11函数的单调性函数的单调性问题三问题三: 以以y y= =x x2 2+1+1在在 (0(0,+ +) )上单调性为上单调性为例,如何用精确的数例,如何用精确的数学语言来描述函数的学语言来描述函数的单调性单调性?xyy=x2+1O11函数的单调性函数的单调性实现实现图形语言图形语言文字语言文字语言符号语言符号语言随着?随着?增大?增大?任取?任取?xyy=x2+1O11函数的单调性函数的单调性1 1、函数单调性定义、函数单调性定义定义内容进一步提问:进一步提问:如何判断如何判断 f(xf(x1 1)f(x)f(x2

10、 2) )得到求差法后提出得到求差法后提出 记记: :x= x2 2- -x1 1 y= f( f(x2 2)-f()-f(x1 1)= )= y2 2- -y1 1 创设情境创设情境引入新课引入新课初步探索初步探索概念形成概念形成概念深化概念深化延伸拓展延伸拓展问题四问题四:能否说:能否说f f( (x x)= )= 在它的定义域上是减函数?在它的定义域上是减函数?x1学生提出反例,得到结论学生提出反例,得到结论进一步提问:进一步提问:函数在定义域内的两个区间函数在定义域内的两个区间A A, ,B B上都是增(减)函数,上都是增(减)函数,何时函数在何时函数在A AB B上也是增上也是增(减

11、)函数(减)函数 oxyOxyOo拓展探究:拓展探究:已知已知函数函数 )0( ,)0( ,)(2xaxxxxf是是(-,+)上的增函数,)上的增函数,求求a a的取值范围的取值范围 何何时满时满足任意性足任意性回回归归定定义义创设情境创设情境引入新课引入新课初步探索初步探索概念形成概念形成概念深化概念深化延伸拓展延伸拓展证法探究证法探究应用定义应用定义例例1 1:证明函数证明函数 在(在(0 0,+ + )上是增函数)上是增函数1)(2 xxf 证明:任取证明:任取 且且), 0(,21 xx21xx 012xxx)()(12xfxfy) 1() 1(2122xx2122xx)(1212xx

12、xx002112xxxxx,0)()(12xfxfy函数函数 在(在(0 0,+ + )上是增函数)上是增函数1)(2 xxfxyy=x2+1O11函数的单调性函数的单调性1 1、函数单调性定义、函数单调性定义定定义内义内容容2 2、函数单调性证明、函数单调性证明例例1 1:证证明明过过程程断号断号设元设元变形变形作差作差定论定论例例2 2:判断函数判断函数 在(在(0 0,+ +)上的单调性)上的单调性xxxf1)( 进一步提问:进一步提问:如果把(如果把(0 0,+)条件去掉,如何解这道题?)条件去掉,如何解这道题?(作业)(作业) 课标中指出课标中指出“形式化是数学的基本特征之一,但不形

13、式化是数学的基本特征之一,但不能仅限于形式化的表达。高中课程强调返璞归真能仅限于形式化的表达。高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。出发,寻求方法,并体会转化思想。创设情境创设情境引入新课引入新课初步探索初步探索概念形成概念形成概念深化概念深化延伸拓展延伸拓展证法探究证法探究应用定义应用定义小结评价小结评价作业创新作业创新 从知识、方法两个方面引导学生进行总从知识、方法两个方面引导学生进行总结结回顾函数单调性定义的探究过程;证明、回顾函数单调性定义的探究过程;证明、判断函数单调性的方法步骤;

14、数学思想判断函数单调性的方法步骤;数学思想方法方法作业(作业(1 1、2 2、4 4必做,必做,3 3选做)选做)1 1、证明:函数、证明:函数 在区间在区间00,+ +) )上上 是增函数。是增函数。2 2、课上思考题、课上思考题3 3、求函数、求函数 的单调区间的单调区间4 4、思考、思考P46 P46 探索与研究探索与研究xxf)(xxxf1)( 通过本节课的学习预计学生能够理解单调性通过本节课的学习预计学生能够理解单调性的含义,绝大多数学生能按照单调性的证明步骤的含义,绝大多数学生能按照单调性的证明步骤进行证明,能判断函数的单调性。进行证明,能判断函数的单调性。 本节课最后设计了课堂反馈并结合教师评价本节课最后设计了课堂反馈并结合教师评价和学生自评来评价本节课的学习效果。和学生自评来评价本节课的学习效果。xyy=x2+1O11函数的单调性函数的单调性1 1、函数单调性定义、函数单调性定义定定义内义内容容2 2、函数单调性证明、函数单调性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论