




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标利用韦达定理及弦长公式求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷. 一、椭圆的焦点弦长 若椭圆方程为,半焦距为c>0,焦点,设过的直线的倾斜角为交椭圆于两点求弦长.解:连结,设,由椭圆定义得,由余弦定理得,整理可得,同理可求得,则;同理可求得焦点在y轴上的过焦点弦长为(a
2、为长半轴,b为短半轴,c为半焦距). 结论:椭圆过焦点弦长公式: 二、双曲线的焦点弦长 设双曲线其中两焦点坐标为,过F1的直线的倾斜角为,交双曲线于两点求弦长|AB|. 解: (1)当时,(如图2)直线与双曲线的两个交点A、B在同一支上,连,设,由双曲线定义可得,由余弦定理可得整理可得,则可求得弦长(2),如图3,直线与双曲线交点在两支上,连F2A,F2B,设则,由余弦定理可得, 整理可得, 因此焦点在x轴的焦点弦长为 同理可得焦点在y轴上的焦点弦长公式 其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角.三、 抛物线的焦点弦长 若抛物线与过焦点的直线相交于两点,若的倾斜角为,求弦长|AB
3、|.(图4) 解:过A、B两点分别向x轴作垂线AA1、BB1,A1、B1为垂足,则点A的横坐标为,点B横坐标为,由抛物线定 同理的焦点弦长为 的焦点弦长为,所以抛物线的焦点弦长为 由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握.圆锥曲线的弦长公式一、椭圆:设直线与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则 |P1P2|=|x1-x2|或|P1P2|=|y1-y2|K=(y2-y1)/(x2-x1)=二、双曲线:设直线与双曲线交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则 |P1P2|=|x1-x2|或|P1P2|=|y1-y2|K=(y2-y1)/(x2-x1)=三、抛物线:(1)焦点弦:已知抛物线y²=2px,A(x1,y1),B(x2,y2),AB为抛物线的焦点弦,则 |AB|=x1+x2+p或|AB|=2p/(sin²)为弦AB的倾斜角(2)设直线与抛物线交于P1( x1,y1),P2(x2,y2),且P1P2斜率为K,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三国演义课件精讲
- 2025-2030中国康乐宝杀菌膏行业经营风险与需求现状分析报告
- 2025年春期末测试-三年级数学试卷质量分析
- 深圳教师资格证面试备考题库精 编
- 文旅结合面试实战技巧与题目
- HR专员面试题及答案
- 面试官必 备:线程池面试题库精 编系列
- 三体课件模板
- 妈妈的手阅读答案
- 为什么您关注制酒行业的招聘问题?解析面试题
- 2024四川甘孜州康定市市属国有企业招聘康定市投资发展集团有限公司经理层人员笔试参考题库附带答案详解
- TLYCY 3071-2024 森林草原防火无人机监测技术规范
- 急诊护患沟通技巧
- 管廊钢结构制作安装施工方案
- 智慧水利与水资源管理作业指导书
- 人教版高一英语必修一单词表(带音标) mp3跟读朗读听力下载
- 中国移动家集客考试题库(浓缩700题)
- 医疗器械产品生命周期管理-洞察分析
- T∕CFA 0308052-2019 铸造绿色工艺规划要求和评估 导则
- 中国古代文学史明代文学
- 《薄冰英语语法详解》
评论
0/150
提交评论