下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于模型熵的中药学教学效果评估模型研究 【关键词】 熵权;模糊数学;教学效果, 摘要: 提出一种基于熵权的模糊优选模型,将模型数学与熵权概念有机结合,建立了中药学教学效果评估模型,对教学中的各种因素进行分析,为教学管理等决策提供了科学的依据,具有较高的应用价值。关键词: 熵权; 模糊数学; 教学效果 1 问题的提出教学效果评估是教师教学
2、工作中的重要组成部分,教学效果的好坏直接影响所培养学生的素质的高低1,因此各类学校都希望能客观、公正、全面地评价教师的教学质量,以激励教师提高教学水平。然而教学评估涉及因素复杂,是一件十分复杂而又争议性大的工作,所以需要尽可能在详细实在的资料、客观的标准和科学的方法基础上才能做到客观公正。就中药学教学而言,国内各学校目前大多由多位专家所组成的评估小组对评价指标量化,结合学生给教师评分,进行加权求和的评价,结果往往不尽人意。中药学是我国传统文化的一个重要方面,中药学的内容具有明显的传统文化色彩,同时中药学是中医学基础理论和临床及中药其它专业学科的枢纽,中药学的教学地位和意义突出,因此中药学教学效
3、果评估模型的建立在某种意义上就是完善评估中医药学科学生教学效果的基础。可以看到,教学评价的评价指标中往往存在着不确定性,如教师上课迟到或早退的概率是随机的,用频率直接替代概率对其进行描述欠妥,而用熵来反映这种信息情况则更为客观;同时,教学评价的评价指标中存在很多定性变量,这些变量在语义上存在“模糊性”,比如教学重点突出与不突出之间没有明显的界限,即不能够进行非此即彼的划分,这就是模糊性。在这种情形下,用单一数值将定性变量定量化将会造成较大误差;而模糊数学用隶属度对其进行刻画,能较为客观地反映出实际情况。2 模糊优选熵权模型的构建熵的概念源于热力学,后在工程技术、经济社会中得到应用,
4、是一种多目标决策的有效方法。熵是系统状态下不确定性的一种度量,当系统可能处于n种不同状态,每种状态出现的概率pi(i=1,2,n)时,该系统的熵为:E=-n i=1pilnpi,其中:pi满足0pi1;n i=1pi=1条件熵的定义为:设系统A、B统计相关,则E(A/B)是系统B已知时,系统A的熵或称为条件熵。在整体教学评估体系中,设有n个评价指标,m个待评标的,Xik是待平标的k的评价指标i的计算值,X*i是评价指标i的理想值。X*i值大小因评价指标特性不同而异,对于促进教学发展的指标(如授课条理清楚等),X*i越大越好;对于不利性指标(如学生
5、逃课率等),X*i越小越好。定义:当X*i=manXik时,dik=Xik X*i;当X*i=minXik时,dik=X*i Xik(1)根据熵的定义,评价指标i对待评标的相对重要性的不确定性可由下列的条件熵来度量:E=-m k=1dik diln(dik di)(2)由熵的极值性可知dik/di(k=1,2,m)越接近相等条件,熵就越大,评价指标的不确定性也就越大。当dik/di(k=1,2,m)相等时,条件熵最大,即Emax=lnm,用Emax对式(3)进行归一化处理,得
6、到表征评价指标i的评价标的重要性的熵值为:e(di)=-1 lnm-m k=1dik diln(dik di)(3)为了便于综合评价,由e(di)确定评价指法标i的评价权值i为:i=1 n-Ee1-e(di)(4)其中,Ee=n i=1e(di),且满足:0i1;n i=1i=1 。评价权值i取决于待评标的固有信息,因此,同一个评价决策指标对于不同的待评标的会有不同的评价权值i。对于多目标决策不能忽视评价者(如评审专家、学生代表
7、等)的经验判断力,并按下式将两者合成为一个实用权值i:i=ii n i=1ii(5)其中i满足0i1, n i=1i=1。对于待评标的k,所有评价指标的接近度与待评标的理想接近度差的加权和Sk为:Sk=n i=1i(d*i-dik),其中d*i=maxdik=1Sk=1-n i=1i(dik)(6)显然,Sk小的待评标的优于Sk大的待评标的,即Sk中的最小者在所有教学效果评估标的中为最优。对于定性指标,采用模糊数学方法对其进行量化能够较为客观的反映实际情况。一般需要以下三个步
8、骤: 评判因素论域U U代表综合评判中各评价指标所组成的集合; 评语等级论域V V代表综合评判中评语所组成的集合,它的实质是对被评事物变化区间的一个划分,对于各评语等级赋予分值Vj。如项目总体风险可分为无风险、风险较小、风险一般、风险较大、风险不可接受5个评语等级。 模糊关系矩阵R R是单因素评价的结果,即单因素评价矩阵:R=r11 r12 r1mr21 r22 r2m
9、60; rn1 rn2 rnm其中rij为U中ui对应V中等级vj的隶属关系,即从因素ui着眼评价对象被评为vj等级的隶属关系。因此,对于定性变量,公式(1)中Xik由公式(8)计算:Xik=m j=1rijVj(7) 3 模糊优选熵权模型在中药学教学评估中的应用根据建模的基本原理,考虑到模型的综合性、通用性、简洁性和可操作性等基本要求,建立中药学教学评价指标体系
10、师德(U1)为人师表,教书育人U11;高度责任心U12;注重素质培养U13;批评不良现象U14。 教学态度(U2)认真备课U21;严格要求学生U22;课堂气氛活跃U23;激发学生求知欲U24;耐心辅导与答疑U25;无迟到、早退、随意调课U26。 教学内容(U3)符合中药学教学大纲要求,教材得当U31;与教学日历同步U32;授课内容饱满,重点突出U33;理论联系实际U34;了解中药学学科发展动态U35。 教学能力(U4)业务精通U41;了解中药学学科与其它交叉学科的关系U42;能够因实际情况,选取有效的中药学教学方法U43。 教学方法与手段(U5)启发式或参与式教学U51;培养学生思维方式U52
11、;开发学生学习潜力U53;采用现代化的教学工具U54。 学术水平(U6)知识丰富,掌握中药学学科前沿知识U61;具有创新能力U62。假设对A,B,C,D四名教师的教学效果进行评估,以A为例,对上述6项指标进行综合评价。对于定量指标,直接由公式(1)(6)进行计算;对于定性指标,设各指标的评语等级为优秀、良好、一般、较差、很差5个等级,其分值分别为02,04,06,08,1。由专家咨询法确定模糊向量并利用评语集分值根据公式(7)计算出XiA,再由公式(1)(6)进行计算,结果列于表1。表1 评估标的A的熵权信息略最后基于熵权计算出各项目方案的熵权系数为SA,SB,SC,SD。对于SA,SB,SC,SD的大小进行排序,其中的最小值即为教学效果最优者。4 结论本研究将熵的概念引入教学效果评估模型,使已有信息得到了最大利用,即利用了根据待评标的固有信息所得的评价权值和专家及学生代表等的主观判断权值,并将两者结合起来,是一种主客观相结合的有效方法。同时,本研究用模糊数学的方法处理定性变量的语义模糊问题,较为科学地刻画了客观情况。模型结果将评估标的进行优劣排序,能够促进中药学的学科建设及教学改
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 世界营养日宣传
- 营养的重要性培训
- 供应商企业CEO实训总结
- 校园雨水安全教育
- 营养学饮食调查
- 活动报名协议书
- 同意股权转让协议书
- 2025-2026学年安徽省六安市高二化学上册期中考试试卷及答案
- 西师版四年级道德与法治上册月考考试试题及答案
- 2025年西师版初一历史上册月考考试试题及答案
- (2025年)册人力资源管理试题及答案
- 纪委监委试题题库及答案
- 甜水园吉野家餐厅合同7篇
- 2025年考编护理解剖学题库及答案
- 2025年丽水市属企业面向残疾人公开招聘工作人员7人考试参考试题及答案解析
- 镇江市2025年度专业技术人员继续教育公需科目考试题库(附答案)
- 2024年蚌埠五河县事业单位选调工作人员考试真题
- 亨利八世课件
- 足球绕杆射门课件
- 2025年广东公务员考试申论试题及参考答案(县级)
- 2025湖北黄石市城市发展投资集团有限公司人才引进拟录笔试历年参考题库附带答案详解
评论
0/150
提交评论