《塑性加工模拟及自动控制》课件:SimulationsMaterials2_第1页
《塑性加工模拟及自动控制》课件:SimulationsMaterials2_第2页
《塑性加工模拟及自动控制》课件:SimulationsMaterials2_第3页
《塑性加工模拟及自动控制》课件:SimulationsMaterials2_第4页
《塑性加工模拟及自动控制》课件:SimulationsMaterials2_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Simulations of plastic processing: elasto-plastic deformationPart 2: elastic deformationTeacher: 法法 QQ号:2306847727, office 523 A区Content Origin of Elastic deformation Hooke law 胡克定律 Applications 应用 Material are made of atoms Atoms are bounded by electrical forces Atoms cannot be seen as rigid balls,

2、 but can be modeled like points linked by springs: When external forces are applied to the material, the inter-atomic space changes There is an equilibrium between the electric forces and the external forces.Origin of Elastic deformationOrigin of Elastic deformation Electrical force between atoms: t

3、he interatomic potentialInteratomic space (when no external forces are applied)Origin of Elastic deformation For small variations around equilibrium, the interatomic potential is modeled as a linear relationship, so the force is linear and proportional to the displacement, as the force of a spring:

4、F = k*lOrigin of Elastic deformation This first linear simplification makes force proportional to the displacement of the interatomic space. So there is a linear relation between applied force (pressure in fact) and strain: =E E is call the Youngs modulus. This simple relation is right in uniaxial d

5、eformation, along the direction of the force.Origin of Elastic deformation In case of elastic deformation, the volume changes. When a force (or pressure) is applied in one direction, there is a deformation in the lateral direction:beforeWith applied forceOrigin of Elastic deformation The lateral str

6、ain depend on the material. Its measure give the Poisson ratio noted (Greek letter nu) yy=-/ExxbeforeWith applied forceXYHooke law For elastic deformation, we have to use the Hooke law ij = Cijkl : kl , C is the stiffness tensor (刚度张量) C is a tensor of rank 4, but we write it as a matrix 6*6, which

7、is for isotropic materials C = and = 2+ 0 0 0 2+ 0 0 0 2+ 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 2xx yy zz xy xz yzGangduHooke law ij = ijkk+2ij ij = Kijkk + 2(ij 1/3*ijkk) with K: Bulk modulus (or incompressibility), =K-2/3* Lam parameter (lamda)=G: shear modulus (or rigidity, mu), ij=1 if i=j, el

8、se 0 the Kronecker delta normal stress: xx = (xx+yy+zz)+2xx = K*V+2(xx-V/3) Shear stress: xy = 2xyHooke law ij = Sijkl : kl , S is the compliance tensor (柔度张量) ij=1/E*(1+)ij-ijkk E: Young modulus, = Poissons ratio (nu) S = 1/E*1 - - 0 0 0 - 1 - 0 0 0 - - 1 0 0 0 0 0 0 (1+) 0 0 0 0 0 0 (1+) 0 0 0 0 0

9、 0 (1+) roudu zhangliangHooke law Relationships between K, , , E, : = E/2(1+) K = E/3(1-2) = +2/3* = E/(1-2)(1+) =K-2/3* E = 9K/(3K+) = (9+6)/(3-) = (3K-2)/2(3K+) = /2(-/3)Hooke law Uniaxial traction along X: yy = zz = - xx V= xx + yy + zz = xx*(1-2v)/E xx = (V)+2xx=EV/(1-2 )(1+) + 2E/2(1+)*xx = xx

10、/(1+) + E/(1+)*xx xx(1+-)/(1+) = E/(1+)xx xx = E xxApplications Compute the elastic deformation during a compression test of Mg alloy Compute the change of volume for Mg during a tensile test e = 0.2/E = 200/45000 = 0.0044 xx +yy +zz = -*zz/E -*zz/E + 1/E*zz = (1-2*0.35)*200/45000 = 0.00133Applications in uniaxial deformation:V= xx +yy +zz = xx*(1-2)/E Metal

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论