




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品试卷考点4整式一.选择题(共28小题)1. (2019?云南)按一定规律排列的单项式:a, - a2, a3, - a (2019?温州)计算a6?a2的结果是(), a5, - a6,,第n个单项式是()A.anB.-anC.(- 1)n+1anD.(-1)nan【分析】 观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a, a2, a3, - a4, a5, a6,,(1) n+1?an.故选:C.2. (2019?湘西州)下列运算中,正确的是()A、 a2?a3=a5 B. 2a- a=2 C. ( a+b) 2=a2+b2D. 2a+3b=5ab【分析】根据合并同类项
2、的法则,完全平方公式,同底数哥的乘法的性质,对各选项分析判断后利用排除法求解.【解答】 解:A、a2?a3=a5,正确;B、 2a - a=a,错误;C ( a+b) 2=a2+2ab+b2,错误;D 2a+3b=2a+3b,错误;故选:A.3. (2019?河北)若 2n+2n+2n+2n=2,贝U n=()A. - 1 B. - 2 C. 0D.4【分析】利用乘法的意义得到4?2n=2,则2?2n=1,根据同底数哥的乘法得到21+n=1,然后根据零指数哥的意义得到1+n=0,从而解关于n的方程即可.【解答】 解:= 2n+2n+2n+2n=2,.-4?2n=2,.-2?2n=1,.-21+
3、n=1,1- 1+n=0,n= - 1.故选:A.推荐下载精品试卷A. a3B. a4C. a ( 2019?香坊区)下列计算正确的是() A. 2x - x=1 B. x2?x3=x6 C. ( mi- n) 2=m2- n2 D. ( xy3) 2=x2y6 【分析】根据合并同类项的法则,积的乘方,完全平方公式,同底数哥的乘法的性质,对各选项分析判断后利用排 除法求解. 【解答】 解:A、2x - x=x ,错误;D. aB、x2?x3=x5,错误; C (mi n) 2=m2- 2mn+n, 错误; D ( - xy3) 2=x2y6,正确;【分析】根据同底数塞相乘,底数不变,指数相加进
4、行计算.【解答】解:a6?a2=a8,故选:C.5. ( 2019?遵义)下列运算正确的是()A.(-a2)3= -a5 B.a3?a5=a推荐下载C.(-a2b3)2=a4b6D.3a2-2a2=1【分析】直接利用积的乘方运算法则以及同底数哥的乘除运算法则、合并同类项法则分别计算得出答案.【解答】 解:A、(- a2) 3=-a6,故此选项错误;B、a3?a5=a8,故此选项错误;C ( a2b3) 2=a4b6,正确;D 3a2 - 2a2=a2,故此选项错误;故选:C.6. ( 2019?桂林)下列计算正确的是()A. 2x-x=1 B. x (-x) =-2xC. ( x2) 3=x6
5、 D. x2+x=2【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数哥的除法运算法则化简求出即可.【解答】 解:A、2x - x=x ,错误;B、x ( x) =- x2,错误;C ( x2) 3=x6,正确;D x2+x=x2+x,错误;故选:C.故选:D.8. (2019?南京)计算a3? (a3) 2的结果是()A. a8B. a9C. a ( 2019?黔南州)下列运算正确的是() A. 3a2 - 2a2=a2B. ( 2a)2= -2a2C.(a+b)2=a2+b2D.- 2(a1)= - 2a+1 【分析】利用合并同类项对 A进行判断;利用积的乘方对 B进行判断
6、;利用完全平方公式对C进行判断;利用取括 号法则对D进行判断. 推荐下载 D. a18【分析】根据哥的乘方,即可解答.【解答】 解:a3? (a3) 2=a9,故选:B.9. ( 2019?成都)下列计算正确的是()A. x2+x2=x4B.(xy)2=x2y2C.(x2y)3=x6yD. ( x)2?x3=x5【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数哥的乘法法则计算,判断即可.【解答】 解:x2+x2=2x2, A错误;(x-y) 2=x2 - 2xy+y2, B错误;(x2y) 3=x6y3, C 错误;(一x) 2?x3=x2?x3=x5, D 正确;故选:D.10
7、. ( 2019?资阳)下列运算正确的是()A. a2+a3=a5 B. a2x a3=a6 C. ( a+b) 2=a2+b2D. (a2) 3=a6【分析】根据合并同类项的法则,哥的乘方,完全平方公式,同底数哥的乘法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2+a3=a2+a3,错误;B、a2x a3=a5, 错误;C ( a+b) 2=a2+2ab+b2,错误;D ( a2) 3=a6,正确;故选:D.精品试卷【解答】 解:A原式=,所以A选项正确;B、原式二-4a2,所以B选项错误;C原式=a2+2ab+b2,所以C选项错误;D原式二-2a+2,所以D选项错误.故选:
8、A.12. ( 2019?威海)下列运算结果正确的是()A. a2?a3=a6 B. (ab) =- a+b C. a2+a2=2a4 D. a8+a4=a2【分析】直接利用合并同类项法则以及同底数哥的乘除运算法则、去括号法则分别计算得出答案.【解答】 解:A、a2?a3=a5,故此选项错误;B、一(a b) =- a+b,正确;C a2+a2=2a2,故此选项错误;D a8+a4=a4,故此选项错误;故选:B.13. ( 2019?眉山)下列计算正确的是()A. (x+y) 2=x2+y2B.(一卷xy2) 3=-&3y626C. x6+x3=x2 D.: =2【分析】根据完全平方公
9、式、积的乘方法则、同底数哥的除法法则和算术平方根的定义计算,判断即可.【解答】 解:(x+y) 2=x2+2xy+y2, A错误;(-工 xy2) 3=-工 x3y6, B 错误;28x6 + x3=x3, C 错误;= (-2)2=V1=2, D 正确;故选:D.14. ( 2019?湘潭)下列计算正确的是()A. x2+x3=x5 B. x2?x3=x5 C. (- x2) 3=x8 D. x6+x2=x3【分析】直接利用合并同类项法则以及同底数哥的乘除运算法则和积的乘方运算法则分别计算得出答案.【解答】 解:A、x2+x3,无法计算,故此选项错误;B、x2?x3=x5,正确;C (- x
10、2) 3=-x6,故此选项错误;D x6+x2=x4,故此选项错误;故选:B.15. (2019?绍兴)下面是一位同学做的四道题:(a+b)2=a2+b:(-2a2)2=- 4a4,a5+a3=a2,a3?a4=a12.其中做对的一道题的序号是()A.B.C.D.【分析】直接利用完全平方公式以及同底数哥的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】 解:(a+b) 2=a2+2ab+b2,故此选项错误;(-2a2) 2=4a4,故此选项错误; a5+a3=a2,正确;a3?a4=a7,故此选项错误.故选:C.16. (2019?滨州)下列运算:a2?a3=a6,(a3)2=a6,a
11、5+a5=a,(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【分析】根据同底数哥的除法法则:底数不变,指数相减;同底数哥的乘法法则:同底数哥相乘,底数不变,指数相加;哥的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的哥相乘进行计算即可.【解答】解:a2?a3=a5,故原题计算错误;(a3) 2=a6,故原题计算正确;a5+a5=1,故原题计算错误;(ab) 3=a3b3,故原题计算正确;正确的共2个,故选:B.17. (2019?柳州)计算:(2a) ? (ab)=()A. 2ab B. 2a2b C. 3ab D. 3a2b【分析
12、】直接利用单项式乘以单项式运算法则计算得出答案.【解答】 解:(2a) ? (ab) =2a2b.推荐下载故选:B.18. (2019?广安)下列运算正确的()A. (b2) 3=b5B. x3+x3=x C. 5y3?3y2=15y5 D. a+a2=a3【分析】 直接利用哥的乘方运算法则以及同底数哥的除法运算法则、单项式乘以单项式和合并同类项法则.【解答】 解:A、( b2) 3=b6,故此选项错误;B、x3+x3=1,故此选项错误;C 5y3?3y2=15y5,正确;D a+a2,无法计算,故此选项错误.故选:C.19. ( 2019?昆明)下列运算正确的是()A.(-上)2=9 B.
13、2019°- y=- 1C. 3a3?2a 2=6a (aw°)D. VIE-【分析】直接利用二次根式以及单项式乘以单项式运算法则和实数的计算化简求出即可.【解答】解:A、(.)21,错误;B 2,二;:错误;C 3a3?2a 2=6a (aw°),正确;D后二班T混,错误;故选:C.20. ( 2019?赣州模拟)下列计算正确的是()A. a2+a2=2a4 B. 2a2x a3=2a6C. 3a2a=1 D. (a2) 3=a6【分析】根据合并同类项法则、单项式乘法、哥的乘方的运算方法,利用排除法求解.【解答】 解:A、应为a2+a2=2a2,故本选项错误;B
14、、应为2a2Xa3=2a5,故本选项错误;C应为3a- 2a=a,故本选项错误;D ( a2) 3=a6,正确.故选:D.21. ( 2019?广西)下列运算正确的是()A. a (a+1) =a2+1 B. (a2) 3=a5C. 3a2+a=4a3 D. a5+a2=a3【分析】根据单项式乘多项式、合并同类项、同底数哥的除法以及哥的乘方的运算法则,分别对每一项进行分析即 可得出答案.【解答】 解:A、a (a+1) =a2+a,故本选项错误;B、( a2) 3=a6,故本选项错误;C不是同类项不能合并,故本选项错误;D a5+a2=a3,故本选项正确.故选:D.22. ( 2019?恩施州
15、)下列计算正确的是()A. a4+a5=a9 B. (2a2b3) 2=4a4b6C. - 2a (a+3) = - 2a2+6a D. (2a-b) 2=4a2- b2【分析】根据合并同类项、哥的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.【解答】解:A、a4与a5不是同类项,不能合并,故本选项错误;B、( 2a2b3) 2=4a4b6,故本选项正确;C - 2a (a+3) =- 2a2- 6a,故本选项错误;D (2a-b) 2=4a2- 4ab+b:故本选项错误;故选:B.23. ( 2019?武汉)计算(a-2) (a+3)的结果是()A. a2- 6 B. a2+a
16、-6 C. a2+6 D. a2 - a+6【分析】根据多项式的乘法解答即可.【解答】 解:(a-2) ( a+3) =a2+a 6,故选:B.24. ( 2019?河北)将 9.5 2变形正确的是()A. 9.5 2=92+0.52 B. 9.5 2=(10+0.5) (100.5)C. 9.5 2=102 2X 10X 0.5+0.5 2 D. 9.5 2=92+9X 0.5+0.5 2【分析】根据完全平方公式进行计算,判断即可.【解答】 解:9.5 2= ( 10 0.5 ) 2=102 2X 10X 0.5+0.5 2,推荐下载精品试卷故选:C.25. ( 2019?遂宁)下列等式成立
17、的是()A. x2+3x2=3x4B. 0.00028=2.8 X 10 3C. ( a3b2) 3=a9b6 D. ( a+b) ( a- b) =b2 - a2【分析】直接利用平方差公式以及科学记数法、积的乘方运算法则分别计算得出答案.【解答】 解:A、x2+3x2=3x2,故此选项错误;B、0.00028=2.8 X 10 4,故此选项错误;C (a3b2) 3=a9b6,正确;D (- a+b) (- a- b) =a2- b2,故此选项错误;故选:C.26. ( 2019?河北)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A. 2个B. 3个C. 4个D. 5个【分析】根
18、据倒数的定义、绝对值的性质、众数的定义、零指数哥的定义及单项式除以单项式的法则逐一判断可得.【解答】 解:-1的倒数是-1,原题错误,该同学判断正确;| - 3|=3 ,原题计算正确,该同学判断错误;1、2、3、3的众数为3,原题错误,该同学判断错误;2°=1,原题正确,该同学判断正确;2m2+ (- mD = - 2mx原题正确,该同学判断正确;故选:B.27. ( 2019?宜昌)下列运算正确的是()A. x2+x2=x4 B. x3?x2=x6C. 2x4+x2=2x2D. ( 3x) 2=6x2【分析】根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.【解答】
19、 解:A、x2+x2=2x2,选项A错误;B、x3?x2=x3+2=x5,选项 B 错误;C 2x4+x2=2x4 2=2x2,选项 C 正确;D (3x) 2=32?x2=9x2,选项 D 错误.故选:C.28. (2019?宁波)在矩形 ABCDJ,将两张边长分别为 a和b (a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为 S,图2中阴影部分的面积为 S2.当AD- AB=2时,卷-S1的值为()A. 2aB. 2bC. 2a - 2bD. - 2b【分析】利用面积的和差
20、分别表示出S1和S,然后利用整式的混合运算计算它们的差.【解答】解:S产(AB- a)?a+ (CD-b)(AD a) = (AB a) ?a+ (AB b)(AD-a),S2=AB (AD- a) + (a-b) (AB- a),&-S=AB (AD- a) + (a-b) (AB- a) - (AB- a) ?a- (AB- b) (AD- a) = (AD- a) (AB- AB+切 + (AB- a)(a-b-a) =b?A> ab - b?ABab=b (AD- AB) =2b.故选:B.二.填空题(共11小题)29. ( 2019?株洲)单项式 5mn2的次数 3 .
21、【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】 解:单项式5mn2的次数是:1+2=3.故答案是:3.30. ( 2019?长春)计算:a2?a3= a5 .【分析】根据同底数的哥的乘法,底数不变,指数相加,计算即可.【解答】解:a2?a3=a2+3=a5.故答案为:a5.31. (2019?大庆)若 2x=5, 2y=3,贝U 22x+y= 75 .【分析】 直接利用同底数哥的乘法运算法则以及哥的乘方运算法则将原式变形进而得出答案.【解答】 解:丁 2x=5, 2y=3,22x+y= (2x) 2X 2y=52X 3=75.故答案为:75.32.
22、( 2019?淮安)(a2) 3= a6 .【分析】直接根据哥的乘方法则运算即可.【解答】解:原式=a6.故答案为a6.33. ( 2019?苏州)计算:a4+ a= a3【分析】根据同底数哥的除法解答即可.【解答】解:a4+a=a:故答案为:a334. ( 2019?达州)已知 am=3, an=2,贝U a2mn 的值为 4.5 .【分析】首先根据哥的乘方的运算方法,求出a2m的值;然后根据同底数哥的除法的运算方法,求出a2m n的值为多少即可.【解答】解:: am=3, a2m=32=9,,尸上空=4.5. a &故答案为:4.5 .35. ( 2019?泰州)计算: 卷 x?
23、(- 2x2) 3= - 4x7 .【分析】直接利用积的乘方运算法则化简,再利用单项式乘以单项式计算得出答案.【解答】解:X? ( 2x2) 3=L? ( - 8x6)2/ 7=4x .故答案为:-4x7.36. ( 2019?天津)计算2x4?x3的结果等于2x7 .【分析】单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它 的指数作为积的一个因式.依此即可求解.【解答】解:2x4?x3=2x7.故答案为:2x7.37. ( 2019?玉林)已知 ab=a+b+1,贝U (aT) (bT) = 2 .【分析】 将ab=a+b+1代入原式=ab - a
24、- b+1合并即可得.【解答】 解:当ab=a+b+1时,原式=ab- a- b+1=a+b+1 - a- b+1二2,故答案为:2 .38. ( 2019?安顺)若x2+2 (m- 3) x+16是关于x的完全平方式,则 m= T 或7 .【分析】 直接利用完全平方公式的定义得出2 (m- 3) =±8,进而求出答案.【解答】 解:x2+2 (m- 3) x+16是关于x的完全平方式,2 (m- 3) =±8,解得:m=- 1或7,故答案为:-1或7.39. ( 2019?金华)化简(x1) (x+1)的结果是x2- 1 .【分析】原式利用平方差公式计算即可得到结果.【解
25、答】解:原式=x2-1,故答案为:x2- 1三.解答题(共11小题)40. ( 2019?河北)嘉淇准备完成题目:化简;(丁,2+6久-8)-(6齐-5笈2-21发现系数“U印刷不清楚.(1)他把“猜成 3,请你化简:(3x2+6x+8) - ( 6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“:”是几?,* Ji【分析】(1)原式去括号、合并同类项即可得;(2)设“二”是a,将a看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a的值.【解答】 解:(1) (3x2+6x+8) ( 6x+5x2+2)=3x2+6x+8
26、 - 6x- 5x2- 2=-2x2+6;(2)设 “I :” 是 a,贝 U 原式=(ax2+6x+8) (6x+5x2+2)=ax2+6x+8 - 6x - 5x2 - 2=(a - 5) x2+6,标准答案的结果是常数,a - 5=0,解得:a=5.41. (2019?自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔( J. Nplcr , 1550 - 1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr , 1707- 1783年)才发现指数与对数之间的联系.对数的定义:一般地,若ax=N (a>0, aw1),那么x叫做以a为底N的对数
27、,记作:x=log aN.比如指数式24=16可以转化为4=log216,对数式2=log 525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a (M?N =log aM+logaN (a> 0, aw1, M>0, N>0);理由如下:设 log aM=m log aN=n,则 M=am N=a. M?N=a?an=am+n,由对数的定义得 m+n=loga (M?N又< m+n=logaM+logaN1. log a (M?N =log aM + logaN解决以下问题:(1)将指数43=64转化为对数式3=log 464 ;(2)证明 l
28、og a=log ahM- log aN ( 3>0, 3*1, M> 0, N> 0)N(3)拓展运用:计算 log 32+log 36-log 34= 1.【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设log aM=m log aN=n,根据对数的定义可表示为指数式为:M=an, N=an,计算旦的结果,同理由所给材料的N证明过程可得结论;(3)根据公式:log a (M?N =log aM+logaN和 log a=log aM-log aN的逆用,将所求式子表示为:log 3 (2X6+4),N计算可得结论.【解答】 解:(1)由题意可得,指数式
29、43=64写成对数式为:3=log 464,故答案为:3=log 464;(2)设 log aM=n log aN=n,则 M=0 N=an,,2=金一=am n,由对数的定义得 m- n=log ag,N /Na又 m- n=log aM- log aN, log a=log aM-log aN (a>0, aw1, M>0, N>0);(3) 10g 32+log 36 - log 34,=log 3 (2 x 6+ 4),=log 33,二1,故答案为:1.42. ( 2019?咸宁)(1)计算: 近一沈+ |遂2;(2)化简:(a+3) (a2) - a (a 1).
30、【分析】(1)先化简二次根式、计算立方根、去绝对值符号,再计算加减可得;(2)先计算多项式乘多项式、单项式乘多项式,再合并同类项即可得.【解答】解:(1)原式=2正-2+2-企二五;(2)原式=a2_ 2a+3a - 6 - a2+a=2a - 6.b厘米,木工师傅设43. ( 2019?衢州)有一弓边长为 a厘米的正方形桌面,因为实际需要,需将正方形边长增加计了如图所示的三种方案:口装一/J餐一小明发现这三种方案都能验证公式:a2+2ab+b2= (a+b) 2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2= (a+b)请你根据方案二、方案三,写出公式的验证过程.
31、万案方案二:【分析】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解答】解:由题意可得,方案二:a2+ab+ (a+b) b=a2+ab+ab+b2=a2+2ab+b2= (a+b) 2,方案二:a2+a/F(a+b) b a+(a+b) b22= a,ab+,b2+ab+y=a2+2ab+b2= (a+b) 2.44. ( 2019?吉林)某同学化简 a (a+2b) - ( a+b) (a-b)出现了错误,解答过程如下:原式=a2+2ab- (a2- b2)(第一步)=a2+2ab- a2 - b2 (第二步)=2ab - b2 (第三步)(1)该同学解答过程从第二 步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a2+2ab - ( a2 - b2)=a2+2ab - a2+b2推荐下载=2ab+b2.45. ( 2019?扬州)计算或化简(1)(得)1+| 近-2|+tan60。(2) ( 2x+3) 2- ( 2x+3) ( 2x- 3)【分析】(1)根据负整数哥、绝对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店餐饮部服务质量提升计划
- 电子竞技选手培训与职业化发展支持计划
- 工程项目生命周期的各阶段试题及答案
- 食品供应链物流配送合同协议
- 环保设备维护管理预案
- 行政管理专业针对经济法的试题及答案
- 区域经济政策效果评估试题及答案
- 2024年Β-羟基烷酸PHAS项目投资申请报告代可行性研究报告
- 中级经济师复习要点问题试题及答案
- 长期苗木供销协议
- 物流配送智能调度算法-深度研究
- 店铺商品盘点表
- 2024年不动产登记代理人《地籍调查》考试题库大全(含真题、典型题)
- 河道治理及生态修复工程 施工方案与技术措施
- 【MOOC】《英语进阶读与写》(电子科技大学)章节作业期末中国大学慕课答案
- 2024年秋《MySQL数据库应用》形考 实验训练1 在MySQL中创建数据库和表答案
- 物业管理人员开会讲什么
- 景区观光车司机培训
- 生产制造工艺流程规范与作业指导书
- 英语国家概况Chapter12
- 食堂承包经营服务项目 投标方案(技术方案)
评论
0/150
提交评论