2019-2020年青岛市初三中考数学一模模拟试卷_第1页
2019-2020年青岛市初三中考数学一模模拟试卷_第2页
2019-2020年青岛市初三中考数学一模模拟试卷_第3页
2019-2020年青岛市初三中考数学一模模拟试卷_第4页
2019-2020年青岛市初三中考数学一模模拟试卷_第5页
免费预览已结束,剩余56页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2019-2020年青岛市初三中考数学一模模拟试卷、单项选择题(本大题共12个小题,每小题 3分,共36分)1 . (3分)下列实数为无理数的是()I r-3八元A. B4B 叫C. D. 02. (3分)2019年“五一”小长假有四天假期,长沙市共接待游客 356万人次,称为新晋“网3.红城市”,356万人用科学记数法表示为(6 .A . 3.56 X 10 人5C. 3.6X 10 人(3分)下列各式正确的是(A . (a2) 3= a5C.)B. 35.6X 105人D. 0.356X 107人B. 2a2+2a3=2a5D. (xT) (x+1) = x2 T4. (3分)下列手机屏幕

2、手势解锁图案中,是轴对称图形的是()G-O-OO O Oo o OB.o o O0 0 Oo c>-oD.5. (3分)在下列说法中不正确的是(A.两条对角线互相垂直的矩形是正方形B .两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形6. (3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()7.8.9.A .C.(3分)不等式组C.的解集在数轴上表示正确的是(02 3 4 502345023452(3分)已知一次函数345范围为(A. a<3(3分)将抛物线解析式为(A . y= 5 (x+3)y= (3

3、-a) x+3,如果y随自变量x的增大而增大,那么 a的取值C. a< - 3D. a>- 3.y= 5x2先向右平移3个单位,再向上平移 2个单位后,所得的抛物线的2+2B.C. y= 5 (x- 3) 2+2D.2-y= 5 ( x+3)- 2y = 5 (x 3)210. (3分)如图,已知 CA、CB分别与。相切于A、B两点,D是。O上的一点,连接AD、BD,若/ C = 56° ,则/ D 等于(C. 64°D. 62°,斜坡AD长10米,坡11. (3分)如图,考古队在 A处测得古塔BC顶端C的仰角为45)米.度i = 3: 4, BD长1

4、2米,请问古塔 BC的高度为(0 IA . 25.5B. 26C. 28.5D. 20.5D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线A.与B,B-2C.二、填空题(本大题共6个小题,每小题3分,共18分)13. (3分)分解因式:23a2- 12=12. (3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从14. (3分)如图,在平面直角坐标系中,正方形 OABC与正方形ODEF是位似图形,点 O为位似中心.位似比为2: 3,点B、E在第一象限,若点 A的坐标为(1, 0),则点E的坐标是O A. D X15. (3分)在不透

5、明的盒子中装有 6个黑色棋子和若干个白色棋子,每个棋子除颜色外都 相同.任意摸出一个棋子,摸到黑色棋子的概率是工,则白色棋子的个数是516. (3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为 .17. (3分)如图抛物线 y=ax2+bx+c的对称轴是 x= - 1,与x轴的一个交点为(- 5, 0), 则不等式ax2+bx+c>0的解集为 .18. (3分)如图,在平行四边形 ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,字AFD=27,则三角形 ACD的面积等于 .不 三、解答题(本大题共 8个小

6、题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19. (6 分)计算:2sin45° +源-2|-(方)2+ (aT ) 0.1I/24、1220. (6分)先化简 L"JT一丁,然后从-2WaW2的范围内选取一个你认a +2a a +2a2为合适的整数作为 a的值代入求值.21. (8分)某校为了解全校 2400名学生到校上学的方式,在全校随机抽取了若干名学生进 行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制

7、成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了 名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过 2个路口,每个路口都设有红、黄、绿三种信号灯,假设 在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)22. (8分)如图,在 ABC中,CD平分/ ACB, CD的垂直平分线分别交 AC、DC、BC于 点 E、F、G,连接 DE、DG .(1)求证:四边形 DGCE是菱形;(2)若/ DGB = 60° , GC=4,求

8、菱形 DGCE 的面积.23. (9分)某工厂,甲负责加工 A型零件,乙负责加工 B型零件.已知甲加工 60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工 x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工 A型零件所获得的利润为 m元/件(3<m<5),加工B型 零件所获得的利润每件比 A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m (元/件)的函数关系式,并求总利润y的最大值和最小值.24. (9分)如图,AB是。的直径,弦 CD± AB,垂足为H

9、连接C.过弧BD上一点,过E作EG / AC交CD的延长线于点 G ,连接AE交CD于点F,且EG= FG ,连接CE(1)求证:EG是。的切线;(2)求证:GF2=GD?GC;(3)延长AB交GE的延长线于点 M.若tanG=, HC=4、/,求EM的值.25. (10分)如图1,在平面直角坐标系中,已知 ABC, /ABC=90° , / ACB=30° , 顶点A在第二象限,B, C两点在x轴的负半轴上(点C在点B的右侧),BC=2, AACD 与乙ABC关于AC所在的直线对称.(1)当OC = 2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求 O

10、C的长;(3)如图2,将第(2)题中的四边形 ABCD向左平移,记平移后的四边形为 A1B1C1D1, 过点D1的反比例函数y= (kw0)的图象与 BA的延长线交千点 P,问:在平移过程 中,是否存在这样的 k,使得以点P, A1, D为顶点的三角形是直角三角形?若存在,请 直接写出所有符合题意的 k的值;若不存在,请说明理由.26. (10分)在平面直角坐标系中,若点A、C同时在某函数的图象上 (点A在点C的左侧),以AC为对角线作矩形 ABCD,若矩形ABCD的各边都分别与坐标轴乘直, 则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比

11、例函数图象的“雅垂矩形”的两邻边比为1: 4,则下列函数: y=4x;y=-4x;y=2x;y=x中,符合条件的是 (只填写序号)4(2)若二次函数y=x2-2x图象的“雅垂矩形" ABCD的顶点C的横坐标是顶点 A横坐 标白3倍,设顶点 A的横坐标为 m (0vmv0.5),矩形ABCD的周长为L,求L的最大 值.(3)若二次函数y=x2-2nx的图象的“雅垂矩形" ABCD的顶点A、C的横坐标分别为-2, 1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样白一个n,使得线段A'C'将矩形ABCD两部分图形

12、的面积比为 2: 7的两部分?若存在,请求出n的值;若不存在,请说明理由.参考答案与试题解析、单项选择题(本大题共12个小题,每小题 3分,共36分)1 . (3分)下列实数为无理数的是()I r-3八元A. B4B . C. -D. 0【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概 念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环 小数是无理数.由此即可判定选择项.【解答】解:A «=2是整数,是有理数,故选项不符合题意;B、卷是分数,是有理数,故选项不符合题意;C、g是无理数,故选项符合题意;D、0是整数,是有理数,故选

13、项不符合题意.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:兀,2兀等;开方开不尽的数;以及像 0.1010010001,等有这样规律的数.2. (3分)2019年“五一”小长假有四天假期,长沙市共接待游客 356万人次,称为新晋“网 红城市”,356万人用科学记数法表示为()A. 3.56X 106AB. 35.6X 105人C. 3.6X105 人D. 0.356X 107人【分析】科学记数法的表示形式为ax 10n的形式,其中1W|a|<10, n为整数.确定 n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相 同.当原数绝对值10

14、时,n是正数;当原数的绝对值v1时,n是负数.【解答】 解:356万= 3.56X 106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为ax 10n的形式,其中1W|a|<10, n为整数,表示时关键要正确确定a的值以及n的值.3_ a53. (3分)下列各式正确的是(B. 2a2+2a3=2a5C. " b =abD. (x- 1) (x+1) =x2-1ab3【分析】各项计算得到结果,即可作出判断.【解答】解:A原式=a6,不符合题意;B、原式不能合并,不符合题意;3C、原式=a ,不付口题息;D、原式=x - 1,符合题意,故选:D.【点评】此

15、题考查了平方差公式,合并同类项,以及哥的乘方与积的乘方,熟练掌握公 式及法则是解本题的关键.A .0 0-0O O O4. (3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()B.G-0 OG O OO G>-0D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分 折叠后可重合.5. (3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正

16、方形B .两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形【分析】根据既是矩形又是菱形的四边形是正方形进行判断.【解答】解:A、两条对角线互相垂直的矩形是正方形,故选项不符合题意;B、两条对角线相等的菱形是正方形,故选项不符合题意;C、两条对角线垂直且相等的平行四边形是正方形,故选项不符合题意;D、应是两条对角线垂直且相等的平行四边形是正方形,故选项符合题意.故选:D.【点评】本题考查了正方形的判定,通过这道题可以掌握正方形和矩形,菱形的关系.6. (3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()C.【分析】根据

17、从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是 3个小正方形,第二层右边2个小正方形,第三层右边2个小正方形,【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7. (3分)不等式组-1<0 于Q的解集在数轴上表示正确的是0241*>B. 012345114iC. o12345 、1 D. 012345【分析】求出不等式组的解集,表示在数轴上即可.Cx<l【解答】解:不等式组整理得:,.不等式组的解集为 XV 1,L ,>0 12m 4 5故选:A.【点评】此题考查了解一元一次方程组,熟练掌握运算法则是解本题的关键.8. (3分)已知

18、一次函数 y= (3-a) x+3,如果y随自变量x的增大而增大,那么 a的取值 范围为()A . a<3B. a>3C. a< - 3D. a>- 3.【分析】先根据一次函数的性质得出关于a的不等式,再解不等式即可求出a的取值范围.【解答】解::一次函数 y= (3-a) x+3,函数值y随自变量x的增大而增大,3 - a>0,解得 a< 3.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此 题的关键.9. (3分)将抛物线y= 5x2先向右平移3个单位,再向上平移 2个单位后,所得的抛物线的解析式为()22 cA.

19、y=5 (x+3) +2B. y=5 (x+3) - 2C. y= 5 (x-3) +2D.y=5(x- 3) - 2【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:y=5x2先向右平移3个单位,再向上平移 2个单位后的顶点坐标为(3,2),,所得的抛物线的解析式为 y=5(x-3) 2+2.故选:C.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式求解更 简便.10. (3分)如图,已知 CA、CB分别与。相切于A、B两点,D是。O上的一点,连接C. 64D. 62【分析】连接OA, OB.根据圆周角

20、定理和四边形内角和定理求解即可.【解答】解:连接OA, OB,. CA、CB 切。于点 A、B, ./ CAO=Z CBO=90° , . / C=56° , ./AOB=360° - / CAO-/ CBO-/ C=360° -90° -90° -56° =124由圆周角定理知,/ D=yZAOB = 62° ,故选:D.360度.熟练掌【点评】本题考查了切线的性质、圆周角定理、以及四边形的内角和为握:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆 的两条切线,切线长相等等知识是解题的关

21、键.11. (3分)如图,考古队在 A处测得古塔BC顶端C的仰角为45° ,斜坡AD长10米,坡)米.度i = 3: 4, BD长12米,请问古塔 BC的高度为(D SA. 25.5B. 26C. 28.5D. 20.5【分析】 作 AEBC, AF± BD,由 i = 3: 4,可设 AF = 3x, DF=4x,结合 AD=10,利用勾股定理可求得x的值,解直角三角形即可得到结论.【解答】解:如图,过点A作AEXBC于点 巳 过点A作AFXBD,交BD延长线于点F,C由 i = 3: 4,可设 AF = 3x, DF = 4x, AD= 10, - 9x2+16x2=

22、100,解得:x=2 (负值舍去),则 AF = BE=6, DF =8, .AE=DF + BD=8+12 = 20, . / CAE=45° ,-.CE= AE=20,贝U BC=CE+BE= 20+6=26,故选:B.【点评】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是能根据题意构 造直角三角形并结合图形利用三角函数解直角三角形.12. (3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从 D、C两 点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线 段CP的最小值为()A. JC. Vs-l【分析】 首先判断出

23、ABEA BCF,即可判断出/ BAE=/CBF,再根据/ BAE+/BEA = 90° ,可得/ CBF + ZBEA=90° ,所以/ APB=90° ;然后根据点 P在运动中保持/APB=90° ,可得点P的路径是一段以 AB为直径的弧,设 AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在RtABCG中,根据勾股定理,求出CG的长度, 再求出PG的长度,即可求出线段 CP的最小值为多少.【解答】解:如图,二动点 F, E的速度相同,DF= CE,又 CD = BC, .CF= BE,在人8£和4 BCF中,rAB=BC=1Z

24、ABE=ZBCF=90s BE=CFABEABCF (SAS), ./ BAE=Z CBF , . / BAE+Z BEA =90° , ./ CBF+Z BEA=90° , 点P在运动中保持/ APB=90° ,.点P的路径是一段以 AB为直径的弧,在 RtABCG 中,CG =Vbc2+bg2 =2/5PG =设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,.CP=CG-PG =即线段CP的最小值为故选:A.DC【点评】 此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三 角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出

25、什么情况下,CP的长度最小.二、填空题(本大题共 6个小题,每小题 3分,共18分)13. (3 分)分解因式:3a2 - 12= 3 (a+2) (a - 2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】 解:3a2- 12 = 3 (a+2) (a- 2).【点评】 本题考查了提公因式法,公式法分解因式,提取公因式后要继续利用平方差公 式进行因式分解,分解因式要彻底,直到不能再分解为止.14. (3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点 O为位似中心.位似比为2: 3,点B、E在第一象限,若点 A的坐标为(1, 0),则点E

26、【分析】由题意可得 OA: OD = 2: 3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:二,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3, .OA: OD=2: 3, 点A的坐标为(1,0),即 OA= 1,OD=T 四边形ODEF是正方形,DE= OD = .2,E点的坐标为:(一,二).2 2故答案是:(-y,胃).【点评】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定 义是解此题的关键.15. (3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一

27、个棋子,摸到黑色棋子的概率是则白色棋子的个数是245【分析】设盒子中白色棋子有 x个,根据概率公式列出关于 x的方程,解之可得.【解答】解:设盒子中白色棋子有 x个,根据题意,得:3=工,解得:x=24,经检验:x= 24是原分式方程的解,所以白色棋子有24个,故答案为:24.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16. (3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【分析】利用勾股定理计算出母线长= 15,设该扇形薄纸板的圆心角为n° ,利用弧长公式得到2兀

28、?9=门,解得n=216.J. KU【解答】解:母线长=Jg。+122=15,设该扇形薄纸板的圆心角为所以2兀?9 =旦卫土生,解得n=216,180即该扇形薄纸板的圆心角为216。.故答案为216° .【点评】 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17. (3分)如图抛物线 y=ax2+bx+c的对称轴是 x= - 1,与x轴的一个交点为(- 5, 0), 则不等式 ax2+bx+c> 0的解集为 -5vxv 3 .【分析】先根据抛物线的对称性得到 A点坐标(3, 0),由y= ax?+bx+c>

29、 0得函数值为 正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c>0的解集.【解答】解:根据图示知,抛物线 y= ax2+bx+c图象的对称轴是x= - 1,与x轴的一个交点坐标为(-5, 0),2根据抛物线的对称性知,抛物线y=ax+bx+c图象与x轴的两个交点关于直线 x= - 1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(-5, 0)关于直线x= - 1对称,另一个交点的坐标为(3, 0),.不等式 ax2+bx+c>0, 即 y=ax2+bx+c> 0,,抛物线y=ax2+bx+c的图形在x轴上方,不等式ax2+b

30、x+c>0的解集是一5< x<3.故答案为:-5Vx<3.【点评】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18. (3分)如图,在平行四边形 ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB, Saafd=27,则三角形ACD的面积等于 45.【分析】 先证明 ADFscef 可知旦CE EF二,然后根据相似三角形的性质可知2坠生丝=(四)2再根据也理卫,从而可求出三角形 ACD的面积.SACEF CESACEF EF【解答】 解:在?abc

31、d中,AD / CE, AD = BC adfa cef, 包型CE EF ' .CE=2EB, .ce=2bc=Mad,33. AD FD _ 3.二=一,CE EF 2,21=(世)2SACEF CH 4 1 Sacef= 12, 包四汉.SACEF Sacfd =18, 1- SaACD = Sa AFD + Sa CDF= 27+18=45,故答案为:45【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.三、解答题(本大题共 8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,

32、共66分,解答时写出必要的文字说明、证明过程或演算步骤)19. (6 分)计算:|Vg- 2sin45° +|f2-2|-(子)2+ (V3-l) 0.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数哥、负整数指数哥法则计算即可得到结果.【解答】 解:原式=2/2 X J.+2 4+1 = 1.【点评】此题考查了实数的运算, 零指数哥、负整数指数哥,以及特殊角的三角函数值, 熟练掌握运算法则是解本题的关键.20. (6分)先化简 卜尹一- ? -) T 芋,然后从-2<a<2的范围内选取一个你认 a +2a a +2a 工为合适的整数作为 a

33、的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从-2waw2的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.当a = 1时,原式=【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21. (8分)某校为了解全校 2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了80名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学

34、的路上要经过 2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)【分析】(1)由给的图象解题,根据自行车所占比例为30%,而频数分布直方图知一共有24人骑自行车上学,从而求出总人数;(2)由扇形统计图知:步行占 20%,而由(1)总人数已知,从而求出步行人数,补全频数分布直方图;(3)自行车、步行、公交车、私家车、其他交通工具所占比例之和为100%,再由直方图具体人数来相减求解.(4)画树状图列出所有等可能结果,从中找到到第二个路口时第二次遇到红灯的结果数,根据概

35、率公式计算可得.【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数白3 30%,,抽取学生的总数为 24+ 30% =80 (人).故答案为:80;(2)被抽到的学生中,步行的人数为80X20%= 16 人,直方图:(3)被抽到的学生中,乘公交车的人数为 80- ( 24+16+10+4) = 26,,全校所有学生中乘坐公交车上学的人数约为需 X 2400= 780人.(4)画树状图如下:1,BC于由树状图知,共有 9种等可能结果,其中到第二个路口时第二次遇到红灯的结果数为 所以到第二个路口时第二次遇到红灯的概率为 之 .【点评】本题考查的是用列表法或画树状图法

36、求概率.列表法或画树状图法可以不重复 不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两 步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22. (8分)如图,在 ABC中,CD平分/ ACB, CD的垂直平分线分别交 AC、DC、 点 E、F、G,连接 DE、DG .(1)求证:四边形 DGCE是菱形;(2)若/ DGB = 60° , GC=4,求菱形 DGCE 的面积.【分析】(1)由角平分线的性质和中垂线性质可得/EDC = Z DCG = Z ACD = Z GDC ,可得CE/DG, DE/GC, DE = EC,可证四边形 D

37、GCE是菱形;(2)过点D作DHLBC,由锐角三角函数可求 DH的长,即可求菱形 DGCE的面积.【解答】 证明:(1) .CD平分/ACB,ACD = / DCG, EG垂直平分CDDG=CG, DE = EC,/ DCG = / GDC , / ACD = / EDC/ EDC = / DCG = / ACD = / GDC . CE / DG , DE / GC 四边形DECG是平行四边形,且 DE = EC,四边形DGCE是菱形(2)如图,过点D作DH LBC,BiiG C 四边形DGCE是菱形,DE= DG=GC = 4, DG / EC在 RtADGH 中,/ DGB = 60&#

38、176; . DH =DGcos30° = 2行 菱形 DGCE 的面积=GCX DH = 8/j【点评】本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定 是关键.23. (9分)某工厂,甲负责加工A型零件,乙负责加工 B型零件.已知甲加工 60个A型零件所用时间和乙加工 80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工 x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工 A型零件所获得的利润为 m元/件(3<m<5),加工B型零件所获得的利润每件比 A型少1元.求每天甲、乙

39、加工两种零件所获得的总利润y(元)与m (元/件)的函数关系式,并求总利润y的最大值和最小值.【分析】(1)根据题意,易得 更13匚,解可得x的值,进而可得答案; x 35-k(2)根据题意,可得关系式 y=15m+20 (mT),化简可得y=35m- 20,根据一次函数的性质分析可得答案.【解答】解:(1)根据题意,每天甲、乙两人共加工35个零件,设甲每天加工x个,则乙每天加工 35-x;根据题意,易得更LL, 其 35一舅解得x=15,经检验,x = 15是原方程的解,且符合题意.35- 15=20,答:甲每天加工15个,乙每天加工 20个;(2) y= 15m+20 ( m - 1),即

40、 y=35m- 20,在y=35m-20中,y是m的一次函数,k=35>0, y随m的增大而增大,又由已知得:3< mW 5,当m=5时,y最大值=155,当m=3时,y最小值=85.【点评】此题主要考查了分式方程的应用,能根据题意,列出关系式,进而结合一次函数的性质得到结论或求解方程是解题关键.24. (9分)如图,AB是。的直径,弦 CD± AB,垂足为H连接C.过弧BD上一点,过E作EG / AC交CD的延长线于点 G ,连接AE交CD于点F,且EG= FG ,连接CE(1)求证:EG是。的切线;(2)求证:GF2=GD?GC;(3)延长AB交GE的延长线于点 M.

41、若tanG=r,HC=4、jl,求EM的值.4【分析】(1)连接OE,证明/ GEO=90° ,即GEXOE,于是EG是。的切线;(2)连接 DE,易得GDEsGEC,得到 GE2=GC?GD,又 GF = GE,所以 GF2=GC ?GD;(3)如图,连接OC.设。的半径为r.在RtAHC中,tg/ACH=HC 4姗:3有,在RtAHOC中,由勾股定理得r- 6,由 AHCA MEO,所以 £J仁"卬 .2【解答】解:(1)证明:如图,连接 OE, ,. GF=GE, ./ GFE = Z GEF = Z AFH , . OA=OE, ./ OAE=Z OEA,

42、 . / AFH + Z FAH=90° , ./ GEF+Z AEO = 90° , ./ GEO= 90° ,GEXOE,EG是。O的切线;(2)连接 DE,易得 GDEsGEC,.题型 ,GC GE .GE2=GC?GD,又 GF = GE, .GF2=GC?GD;(3)如图,连接OC.设。O的半径为r.在 RtAAHC 中,apj qt am/ on,nU 4 II: 4,:J .在 RtAHOC 中,OC=r, 0H=r-3V3, HC=4后G-3近)(小).烬久 T=>6. GM / AC, ./ CAH = Z M, . / OEM = /AH

43、C,AHCA MEO,,四里EM OE.巫必一EM 2M,6【点评】 本题考查了圆,熟练运用圆的切线定理、相似三角形的性质以及勾股定理是解 题的关键.25. (10分)如图1,在平面直角坐标系中,已知ABC, /ABC=90° , / ACB=30° ,顶点A在第二象限,B, C两点在x轴的负半轴上(点C在点B的右侧),BC=2, AACD 与乙ABC关于AC所在的直线对称.(1)当OC = 2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求 OC的长;(3)如图2,将第(2)题中的四边形 ABCD向左平移,记平移后的四边形为 A1B1C1D1, 过点D1

44、的反比例函数y= (kw0)的图象与 BA的延长线交千点 P,问:在平移过程中,是否存在这样的 k,使得以点P, A1, D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的 k的值;若不存在,请说明理由.g 1图2【分析】(1) 4ADC与 ABC关于AC所在的直线对称,则CD = BC=2, / ACD = / ACB= 30° ,过点 D 作 DELBC 于点 E, / DCE = 60° ,则 CE=I,即可求解;(2)求出A, D坐标,两个点在同一反比例函数上,则幻二四(FL1),即可求解;(3)分P为直角顶点、D为直角顶点,两种情况分别求解即可.【解答

45、】 解:(1) , ADC与 ABC关于AC所在的直线对称,.-.CD = BC=2, Z ACD = Z ACB=30° ,过点 D 作 DEBC 于点 E,/ DCE=60° , .OC = 2, .OE=3,75);(2)设 OC=m,贝U OE = m+1 , OB=m+2在 RtABC 中,/ACB = 30° , BC=2,2VS| 前一,l 一 工 一 L L).:i 1 1 . :,. A, D在同一反比例函数上,J解得:m= 1 , .OC=1;(3)由(2)得:4(-孔 J D (-2,;四边形A1B1C1D1由四边形ABCD平移得至IJ, D

46、i在反比例函数 产上必于0)上,,Xp=XA= -3, P 在反比例函数 y=k(k¥:O)上,.,P(-3, -y),若P为直角顶点,则 AiPXDP,由 5 B UU却过点P作ljy轴,过点Ai作Aim过点D作DGLi,则 AiPF7 PDG,1. 2/3V3,空.空工二 对DG, 1 9飞12解得:k=-6V3;若D为直角顶点,则AiDXDP,过点D作l2,x轴,过点Ai作AiH,|2,则 AiDHDPG ,-1巫k运DG-PG冬3】解得:k=0 (舍),综上:存在k=-6V3【点评】 本题考查的是反比例函数综合运用,涉及到一次函数、三角形相似等知识点, 此类题目的关键是,通过

47、设线段长度,确定图象上点的坐标,进而求解.26. (10分)在平面直角坐标系中,若点A、C同时在某函数的图象上 (点A在点C的左侧), 以AC为对角线作矩形 ABCD,若矩形ABCD的各边都分别与坐标轴乘直, 则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1: 4,则下列函数: y=4x;y= - 4x;y= 2x; y=x中,符合条件的是(只填写序号)(2)若二次函数y=x2-2x图象的“雅垂矩形" ABCD的顶点C的横坐标是顶点 A横坐 标白3倍,设顶点 A的横坐标为 m (0vmv0.5

48、),矩形ABCD的周长为L,求L的最大 值.(3)若二次函数y=x2-2nx的图象的“雅垂矩形" ABCD的顶点A、C的横坐标分别为-2, 1,分别作点A、C关于此二次函数图象对称轴的对称点 A、C,连接A'C',是否存 在这样白一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为 2: 7的两部分?若【分析】(1)由“雅垂矩形”的两邻边比为 1: 4可以得出正比例函数的系数 k的值,从而得出答案;(2)由题意知 A (m, m2 2m) , C (3m, 9m2 6m).由 0V m< 0.5知 CD= 3m- m= 2m, BC=m22

49、m (9m2-6m) =4m2 8m,从而得 L=2 (CD+BC) =- 16m12m=- 16(m- 0.375) 2+2.25,据此可得答案;(3)作A' H±CC,,证四边形A' BDC'是平行四边形得 A C' / BD,由题意可知,A (-2, 4+4n)、C (1, 1 -2n),二次函数图象的对称轴为直线x=n, AB=CD = 3,根据两部分图形的面积比为 2: 7,分n<0和n>0两种情况,分另U得出关于 n的方程,解之可得.则 k=tanZ CAB =或 k = 4;y=kx图象经过第一、三象限时,当正比例函数y=kx

50、图象经过第二、四象限时,k= - 或 k= - 4,4.此正比例函数解析式为x,故答案为:;(2)由题意可知, A (m, m2-2m), C (3m, 9m2-6m). 0<m< 0.5,1. CD = 3m - m= 2m, BC = m2 - 2m - (9m2-6m) = 4m2- 8m, . . L = 2 (CD + BC) =- 16m2- 12m= - 16 (m-0.375) 2+2.25, 当m= 0.375时,周长最大为 2.25;(3)如图2,过点A'作A' H±CC,于点H,图上四边形A' BCH是矩形. .A'

51、B=CH,由抛物线的轴对称性可知,CH = C' D. .A' B=C' D. A' B/ C D,四边形A' BDC'是平行四边形. .A' C' B BD.AB由题意可知,A (- 2, 4+4n)、C (1, 1-2n),二次函数图象的对称轴为直线x= n,=CD = 3.O图3若线段A' C'将矩形ABCD分成两部分图形的面积比为2: 7,当 n<0 时,AA' : AB=2: 3, AA' =2n+4,.AA' = 2n+4=2.n = - 1,当 n>0 时,CC &

52、#39; : CD = 2: 3, CC' = 2 (1 2n) = 2 - 2n.CC' = 2- 2n=2.n = 0,'综上,n的值为-1或0.【点评】 本题是二次函数的综合问题,解题的关键是理解并掌握“雅垂矩形”的概念、二次函数性质的运用、平行四边形的判定与性质等知识点.中学数学一模模拟试卷、单项选择题(本大题共12个小题,每小题 3分,共36分)1 . (3分)下列实数为无理数的是()A . V4B.2. (3分)2019年“五一”小长假有四天假期,C. D . 02长沙市共接待游客 356万人次,称为新晋“网红城市”,356万人用科学记数法表示为(6 .A

53、. 3.56 X 10 人5C. 3.6X 10 人3. (3分)下列各式正确的是(2、 A . (a )r c -_5 ,B. 35.6X10 人D. 0.356X 107人B. 2a2+2a3=2a4 5 6D. (x-1) (x+1) = x2 T7.8.9.A .C.(3分)不等式组C.的解集在数轴上表示正确的是(02 3 4 502345023452(3分)已知一次函数345范围为(A. a<3(3分)将抛物线解析式为(A . y= 5 (x+3)y= (3-a) x+3,如果y随自变量x的增大而增大,那么 a的取值C. a< - 3D. a>- 3.y= 5x2先

54、向右平移3个单位,再向上平移 2个单位后,所得的抛物线的2+2B.C. y= 5 (x- 3) 2+2D.2-y= 5 ( x+3)- 2y = 5 (x 3)210. (3分)如图,已知 CA、CB分别与。相切于A、B两点,D是。O上的一点,连接AD、BD,若/ C = 56° ,则/ D 等于(C. 64°D. 62°,斜坡AD长10米,坡11. (3分)如图,考古队在 A处测得古塔BC顶端C的仰角为45)米.度i = 3: 4, BD长12米,请问古塔 BC的高度为(0IA . 25.5B. 26C. 28.5D. 20.5D、C两点同时出发向C、B运动(任何一个点到达即停止),BF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论