高中数学概率统计练习题_第1页
高中数学概率统计练习题_第2页
高中数学概率统计练习题_第3页
高中数学概率统计练习题_第4页
高中数学概率统计练习题_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档11欢在下载2015年12月31日期末复习题(二)一.选择题(共12小题)1.某工厂生产A, B, C三种不同型号的产品,产品数量之比依次为 2: 3: 5.现 用分层抽样方法抽出一个容量为 n的样本,样本中A型号产品有16件,则此样 本的容量为()A. 40 B. 80 C. 160 D. 3202. 某县教育局为了解本县今年参加一次大联考的学生的成绩, 从5000名参加今 年大联考的学生中抽取了 250名学生的成绩进行统计,在这个问题中,下列表述 正确的是()A. 5000名学生是总体B . 250名学生是总体的一个样本C.样本容量是250 D .每一名学生是个体3. (2015?

2、抚顺模拟)某校三个年级共有24个班,学校为了了解同学们的心理状 况,将每个班编号,依次为1到24,现用系统抽样方法.抽取4个班进行调查, 若抽到的最小编号为3,则抽取最大编号为()A. 15 B. 18 C. 21 D. 224. 一个频率分布表(样本容量为30)不小心倍损坏了一部分,只记得样本中数 据在20 , 60)上的频率为0.8 ,则估计样本在40 , 50) , 50 , 60)内的数据个 数共为()A. 15 B. 16 C. 17 D. 195 .如图是容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为(A. 11 B. 11.5C. 12 D. 12.56

3、 .某公司在2014年上半年的收入x (单位:的统计资料如下表所示:月份 1月份2月份3月份4月份5月份6月份收入 x 12.314.515.017.019.820.6支出 Y 5.635.755.825.896.116.18根据统计资料,则()A.月收入的中位数是15, B.月收入的中位数是17, C.月收入的中位数是16, D.月收入的中位数是16,x与y有正线性相关关系 x与y有负线性相关关系 x与y有正线性相关关系 x与y有负线性相关关系7 .下列事件是随机事件的是(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在1C时结冰(4)任意掷一枚骰

4、子朝上的点数是偶数.A. (1)(2)B.(2)(3)C.(3)(4)D.(1)(4)8 .从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是都是红球都是白球2010次出现正面A.至少有1个白球,至少有1个红球B ,至少有1个白球,.至少有1个白球, 2011次,那么第C恰有1个白球,恰有2个白球 D9 .抛掷一枚质地均匀的硬币,如果连续抛掷朝上的概率是(A.L2010B.)L2011C2011D.1个球,摸出红球10 . 口袋内装有一些大小相同的红球、白球和黑球,从中摸出 的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是(A. 0.42 B .

5、 0.28 C. 0.3 D . 0.711 .已知5件产品中有2件次品,其余为合格品.现从这 5件产品中任取2件,恰有一件次品的概率为(A. 0.4 B .12.函数f 的概率是(x)=x x 2)1xq - 5, 5,在定义域内任取一点x。,使f (x。)或A.-B.1。3.填空题(共)C. D.104小题)13 .在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率14 .从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为 。15 .已知盒子中有5个白球、3个黑球,这些球除颜色外完全相同,若从盒子中随机地取出2个球,则其中至少有1个黑球的概率是16.已知下列表格所示的

6、数据的回归直线方程为,则 a 的值23425125425752626266三.解答题(共6小题)17 . 一个单位有职工160人,其中业务员120人,管理人员16人,后勤服务人 员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,用分层 抽样的方法写出抽取样本的过程.18 .已知向量=(2, 1), b= (x, y)(I)若 xC-1, 0, 1, yC-2, -1, 2,求向量;工芯的概率;(n)若用计算机产生的随机二元数组(x, y)构成区域Q:1 一-,求-2<y<2二元数组(x, y)满足x2+y2/的概率.19 .农科院分别在两块条件相同的试验田分别种植了

7、甲、乙两种杂粮作物,从两块试验田中任意选取6颗该种作物果实,测得籽重(单位:克)数据如下:甲种作物的产量数据:111, 111, 122, 107, 113, 114乙种作物的产量数据:109, 110, 124, 108, 112, 115(1)计算两组数据的平均数和方差,并说明哪种作物产量稳定;(2)作出两组数据的茎叶图.20 .如图是校园 十佳歌手”大奖赛上,七位评委为甲、乙两位选手打出的分数的 茎叶图.(1)写出评委为乙选手打出分数数据的众数,中位数;(2)求去掉一个最高分和一个最低分后,两位选手所剩数据的平均数和方差,根据结果比较,哪位选手的数据波动小?7? 7 6 6 4 M32

8、921 .为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现 对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成 绩.数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的理由;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?(已知 88 >94+83X91+117M08+92X96+108X104+100X101+112M06=70497, 882+832+1172+922+1082+1002+1122=70

9、994)22.某城市100户居民的月平均用电量(单位:度),以160 , 180), 180, 200), 200 , 200) , 220.240 ), 240 , 260) , 260 , 280), 280 , 300)分组的频率分 布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,220 , 240) , 240 , 260), 260 , 280) , 280 , 300) 的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220.240 ) 的用户中应抽取多少户?2015年12月31日期末复习题(二)参考答案与试题解析一.

10、选择题(共12小题)1. (2015根西校级模拟)某工厂生产A, B, C三种不同型号的产品,产品数量之比依次为2. 3: 5.现用分层抽样方法抽出一个容量为n的样本,样本中 A型号产品有16件,则此样本的容量为()A. 40 B. 80C. 160 D. 320【考点】分层抽样方法.【专题】概率与统计.【分析】根据分层抽样的定义和方法可得2 =1,解方程求得n的值,即为所求.2+3+5 n【解答】解:根据分层抽样的定义和方法可得一二工,解得n=80 ,2+3+5 n故选B.【点评】本题主要考查分层抽样的定义和方法,各层的个体数之比等于各层对应的样本数之比,属于基础题.2. (2015春?白山

11、期末)某县教育局为了解本县今年参加一次大联考的学生的成绩,从 5000 名参加今年大联考的学生中抽取了250名学生的成绩进行统计,在这个问题中,下列表述正确的是()A. 5000名学生是总体B. 250名学生是总体的一个样本C.样本容量是250D.每一名学生是个体【考点】简单随机抽样.【专题】计算题;概率与统计.【分析】本题考查的是确定总体.解此类题需要注意考查对象实际应是表示事物某一特征的数据,而非考查的事物.”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,考查对象是某地区初中毕业生参加中考的数学成绩,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容

12、量.【解答】解:总体指的是 5000名参加今年大联考的学的成绩,所以 A错;样本指的是抽取的 250名学生的成绩,所以 B对;样本容量指的是抽取的 250,所以C对;个体指的是5000名学生中的每一个学生的成绩,所以D错;故选:C.【点评】考查统计知识的总体,样本,个体,等相关知识点,要明确其定义.易错易混点:学生易对总体和个体的意义理解不清而错选.3. (2015册顺模拟)某校三个年级共有 24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法.抽取4个班进行调查,若抽到的最小编号为 3, 则抽取最大编号为()A. 15 B. 18C. 21 D. 22【考点

13、】系统抽样方法.【专题】概率与统计.【分析】根据系统抽样的定义进行求解即可.【解答】解:抽取样本间隔为24%=6,若抽到的最小编号为 3,则抽取最大编号为 3+3>6=21 ,故选:C【点评】本题主要考查系统抽样的应用,求出样本间隔是解决本题的关键.4. (2015微西二模)一个频率分布表(样本容量为30)不小心倍损坏了一部分,只记得样本中数据在20 , 60)上的频率为0.8 ,则估计样本在40 , 50), 50 , 60)内的数据个数共 为()彳以I I也期 地9你;垃物A. 15B. 16C. 17 D. 19【考点】频率分布表.【专题】概率与统计.【分析】根据样本数据在20,

14、60)上的频率求出对应的频数,再计算样本在40 , 50), 50 ,60)内的数据个数和即可.【解答】解:二样本数据在20 , 60)上的频率为0.8 ,,样本数据在20 , 60)上的频数是 30X0.824 ,,估计样本在40, 50), 50, 60)内的数据个数共为 24-4-5=15.故选:A.【点评】本题考查了频率=,暨L的应用问题,是基础题目.样本容量5. (2015?1台二模)如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为(A. 11B. 11.5 C . 12【考点】众数、中位数、平均数.【专题】概率与统计.【分析】由题意,0.06 X5+

15、xX0.1=0.5 ,所以x为2,所以由图可估计样本重量的中位数.【解答】解:由题意,0.06 X5+xX0.1=0.5,所以x为2,所以由图可估计样本重量的中位数 是12.故选:C.【点评】本题考查频率分布直方图,考查样本重量的中位数, 考查学生的读图能力,属于基础题.2014年上半年的收入 x (单位:万元)与月支出y (单位:6. (2015?胡南一模)某公司在 万元)的统计资料如下表所示:月份 1月份2月份收入 x 12.314.5支出 Y 5.635.753月份4月份15.017.05.825.895月份6月份19.820.66.116.18A.月收入的中位数是 B.月收入的中位数是

16、 C.月收入的中位数是 D.月收入的中位数是根据统计资料,则()15. x与y有正线性相关关系17, x与y有负线性相关关系16, x与y有正线性相关关系16. x与y有负线性相关关系【考点】变量间的相关关系.【专题】计算题;概率与统计.【分析】月收入的中位数是 正坦工=16,收入增加,支出增加,故 x与y有正线性相关关系.2【解答】解:月收入的中位数是 三坦工=16,收入增加,支出增加,故 x与y有正线性相关2关系,故选:C.【点评】本题考查变量间的相关关系,考查学生的计算能力,比较基础.17. (2015春?重庆期末)下列事件是随机事件的是()(1)连续两次掷一枚硬币,两次都出现正面向上.

17、(2)异性电荷相互吸引(3)在标准大气压下,水在 1C时结冰(4)任意掷一枚骰子朝上的点数是偶数.A. (1) (2) B. (2) (3) C. (3) (4) D. (1) (4)【考点】随机事件.【专题】概率与统计.【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:(1)连续两次掷一枚硬币,两次都出现正面向上.是随机事件;(2)异性电荷相互吸引,是必然事件;(3)在标准大气压下,水在 1C时结冰,是不可能事件;(4)任意掷一枚骰子朝上的点数是偶数.是随机事件;故是随机事件的是(1), (4),故选:D【点评】本题主要考查了必然事件、不可能事件、随机事件的概念,

18、用到的知识点为:必然 事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件, 不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.18. (2014春?0郸期末)从装有除颜色外完全相同的2个红球和2个白球的口袋内任取 2个球,那么对立的两个事件是()A.至少有1个白球,至少有1个红球B.至少有1个白球,都是红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是白球【考点】随机事件.【专题】计算题;概率与统计.【分析】对立事件是在互斥的基础之上,在一次试验中两个事件必定有一个要发生.根据这个定义,对各选项依次加以分析,不难得出选项B才是符合题

19、意的答案.【解答】解:对于 A,至少有1个白球”发生时, 至少有1个红球”也会发生,比如恰好一个白球和一个红球,故A不对立;对于B,至少有1个白球”说明有白球,白球的个数可能是 1或2,而 都是红球”说明没有白球,白球的个数是 0,这两个事件不能同时发生,且必有一个发生,故B是对立的;对于C,恰有1个白球,恰有2个白球是互斥事件,它们虽然不能同时发生但是还有可能恰好没有白球的情况,因此它们不对立;对于D,至少有1个白球和都是白球能同时发生,故它们不互斥,更谈不上对立了故选B【点评】本题考查了随机事件当中互斥”与 对立”的区别与联系,属于基础题.互斥是对立的前提,对立是两个互斥事件当中,必定有一

20、个要发生.19. (2015拢川县校级模拟) 抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是()A. -B.一 - -i-D,-2010201120112【考点】概率的意义.【专题】应用题;概率与统计.【分析】简化模型,只考虑第2010次出现的结果,有两种结果,第2010次出现正面朝上只 有一种结果,即可求【解答】解:抛掷一枚质地均匀的硬币,只考虑第2010次,有两种结果:正面朝上,反面朝上,每中结果等可能出现,故所求概率为故选:D.【点评】本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m

21、种结果,那么事件 A的概率P (A)工.a20. (2015?长掖一模)口袋内装有一些大小相同的红球、白球和黑球,从中摸出 1个球,摸 出红球的概率是 0.42,摸出白球的概率是 0.28,那么摸出黑球的概率是()A. 0.42 B , 0.28 C , 0.3 D, 0.7【考点】互斥事件与对立事件.【专题】计算题.【分析】在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的,摸出红球的概率是0.42,摸出白球的概率是 0.28,根据互斥事件的概率公式得到摸出黑球的概率是1-0.42 - 0.28 ,得到结果.【解答】解:口袋内装有一些大小相同的红球、白球和黑球,从中摸出 1个球,在

22、口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的 摸出红球的概率是 0.42 ,摸出白球的概率是 0.28,摸出黑球是摸出红球或摸出白球的对立事件,摸出黑球的概率是 1 - 0.42 - 0.28=0.3 , 故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.21. (2015?广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A. 0.4 B. 0.6 C. 0.8 D. 1【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】首先判

23、断这是一个古典概型,而基本事件总数就是从 5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从 5件产品中任取2件的取法为二1Q; 5基本事件总数为10;设 选白2 2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为C31-C21=6> .P (A) =_L=J=0.6 .10 5故选:B.【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的 概念,掌握组合数公式,分步计数原理.22. (2015?芜湖校级模函数 f (x) =x2-x-2, xq-5, 5,在定义域内任

24、取一点x°,使f (x0) <0的概率是(i I9qD.A.B.-C.10310【考点】几何概型;一元二次不等式的解法.【专题】计算题.【分析】先解不等式 f (x°)旬,得能使事件f (x0)与发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f (x0)磷发生的概率是0.3【解答】解:.f (x)4? x2 x 24? 1a磴,.f (x0) <0? 1 今0磴,即 x°q1, 2,在定义域内任取一点x0,.x0q - 5, 5,使f (x°)4的概率故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为

25、长度、面积、体积等之比, 是解决问题的关键精品文档二.填空题(共4小题)13. (2015蟆洪市校级模拟)在棱长为 2的正方体内随机取一点,取到的点到正方体中心的 距离大于1的概率 1 -工 . 【考点】几何概型.【专题】计算题.【分析】本题利用几何概型求解.只须求出满足:OQ1几何体的体积,再将求得的体积值与整个正方体的体积求比值即得.【解答】解:取到的点到正方体中心的距离小于等于1构成的几何体的体积为:,点到正方体中心的距离大于1的几何体的体积为:44v=v正方体工元=8 一二n33取到的点到正方体中心的距离大于1的概率:p=-L=1 - 2LV 86故答案为:1-.6为【点评】本小题主要

26、考查几何概型、球的体积公式、正方体的体积公式等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.属于基础题.14. (2015?上海模拟)从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为【考点】等可能事件的概率.【专题】计算题.【分析】由题意列出选出二个人的所有情况,再根据等可能性求出事件甲被选中”的概率.【解答】解:由题意:甲、乙、丙、丁四人中任选两名代表,共有六种情况:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每种情况出现的可能性相等,所以甲被选中的概率为工.故答案为:1.2即列出所有的实验结果,再根据每个事件结【点评】本题考查了等可能事件的概率的求法, 果出现的可能

27、性相等求出对应事件的概率.15. (2015春涌迁期末)已知盒子中有 5个白球、3个黑球,这些球除颜色外完全相同,若从盒子中随机地取出 2个球,则其中至少有 1个黑球的概率是 上【考点】互斥事件的概率加法公式.【专题】概率与统计.二914【分析】利用对立事件的概率公式,可得至少有 1个黑球的概率.【解答】解:由题意,利用对立事件的概率公式, 可得至少有1个黑球的概率是故答案为:国.【点评】此题主要考查了概率公式,考查对立事件的概率公式的运用,比较基础.16. (2015庄帛州二模)已知下列表格所示的数据的回归直线方程为尸3.取+3,则a的值为242.8.x23456y2512542572622

28、66【考点】线性回归方程.【专题】计算题.【分析】求出样本中心点,代入回归直线方程,即可求出a.【解答】解:由表格可知,样本中心横坐标为:2+3,+5+6 =4,5纵坐标为:251+254+257+262+266=258.5由回归直线经过样本中心点,所以:258=3.8 >4+a,a=242.8 .故答案为:242.8 .【点评】本题考查的知识点是线性回归直线方程,其中样本中心点在回归直线上,满足线性回归方程.是解答此类问题的关键.三.解答题(共6小题)17. (2015春江州期中)一个单位有职工 160人,其中业务员120人,管理人员16人,后 勤服务人员24人.为了了解职工的某种情况

29、, 要从中抽取一个容量为 20的样本,用分层抽 样的方法写出抽取样本的过程.【考点】分层抽样方法.【专题】概率与统计.【分析】根据分层抽样的定义即可得到结论.1欺速下载精品文档【解答】解:二样本容量与职工总人数的比为 20: 160=1: 8,业务员,管理人员,后勤服务人员抽取的个数分别为丝匹15.堂二2,建二3,L0占即分别抽取15人,2人和3人.每一层抽取时,可以采用简单随机抽样或系统抽样,再将各层抽取的个体合在一起,就是要抽取的样本.【点评】本题主要考查分层抽样的定义和应用,根据分层抽样的定义是解决本题的关键,比较基础.18. (2014?泉州模拟)已知向量 译(2, 1), b= (x

30、, v)(I )若 xC 1, 0, 1, yq -2, - 1, 2,求向量刁,b的概率;(n )若用计算机产生的随机二元数组 (x, y)构成区域Q:,求二元数组(x,-2<y<2V)满足x2+y2/的概率.【考点】几何概型;古典概型及其概率计算公式.【专题】概率与统计.【分析】(I )本问为古典概型,需列出所有的基本事件,以及满足向量的基本事件,再由古典概型的概率计算公式求出即可;(n )本问是一个几何概型,试验发生包含的事件对应的集合是= (x, y) | - 1<x<1, 2< y< 2,满足条件的事件对应的集合是A= (x, y) | -1<

31、;x<1, - 2<y<2, x2+y:,做出两个集合对应的图形的面积,根据几何概型概率公式得到结果.【解答】解:(I )从xC - 1, 0, 1, yC - 2, - 1, 2取两个数x, y的基本事件有(-1, - 2), (-1, - 1), (-1, 2),(0, - 2), (0, - 1), (0, 2),(1, 2), (1, 1), (1, 2),共 9 种设向量;,为事件A若向量a _L b,则2x+y=0, .事件A包含的基本事件有(-1, 2), (1, 2),共2种 .所求事件的概率为P (A)士J(II )二元数组(x, y)构成区域 Q= (x,

32、 y) | - 1 vxv 1, - 2<y< 2,设上元数组(x, y)满足x2+y2匀”为事件B,则事件 B= (x, y) | - 1<x< 1, - 2<y<2, x2+y2J, 如图所示,TT X 1 2TT .所求事件的概率为P 2X48【点评】本题主要考查古典概型以及几何概型,对于古典概型的问题, 一般要列出所有的事件,以及所求事件包含的事件, 再由古典概型计算公式即可得到结果.对于几何概型的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果.19. (2015斌汉校级模拟)农科院分别在两块条件

33、相同的试验田分别种植了甲、乙两种杂粮作物,从两块试验田中任意选取6颗该种作物果实,测得籽重(单位:克)数据如下:甲种作物的产量数据:111 , 111, 122, 107, 113, 114乙种作物的产量数据:109, 110, 124, 108, 112, 115(1)计算两组数据的平均数和方差,并说明哪种作物产量稳定;(2)作出两组数据的茎叶图.【考点】茎叶图;众数、中位数、平均数;极差、方差与标准差.【专题】概率与统计.【分析】(1)计算甲、乙组数据的平均数与方差,比较得出结论;(2)画出两组数据的茎叶图即可.【解答】解:(1)甲组数据的平均数是短(122+111+111 + 113+1

34、14+107) =113, 甲6乙组数据的平均数是X (124+110+112+115+108+109) =113,6甲组数据的方差是2汉(122 113) 62+ (111 - 113) 2+(111 113)2, 一 一、+ (113113)2+ (114- 113) 2+ (10716欠0迎下载-113) 2=21 ,乙组数据的方差是2+ (110 - 113) 2+(112 113)2,一、+ (115113)2+ ( 108- 113) 2+ (109-113) 2=等;2.精品文档甲的产量较稳定;(2)画出两组数据的茎叶图,如图所示:【点评】本题考查了计算数据的平均数与方差的应用问

35、题,也考查了画茎叶图的应用问题, 是基础题目.20. (2015春薇山期末)如图是校园 十佳歌手”大奖赛上,七位评委为甲、乙两位选手打出 的分数的茎叶图.(1)写出评委为乙选手打出分数数据的众数,中位数;(2)求去掉一个最高分和一个最低分后,两位选手所剩数据的平均数和方差,根据结果比 较,哪位选手的数据波动小?g44 4 673【考点】极差、方差与标准差;茎叶图;众数、中位数、平均数.【专题】计算题;概率与统计.【分析】(1)由茎叶图可知由茎叶图可知,乙选手得分为79, 84, 84, 84, 86, 87, 93,即可写出评委为乙选手打出分数数据的众数,中位数;(2)求出甲、乙两位选手,去掉

36、最高分和最低分的平均数与方差,即可得出结论.【解答】解:(1)由茎叶图可知,乙选手得分为79, 84, 84, 84, 86, 87, 93,所以众数为84,中位数为84;(2)甲选手评委打出的最低分为84,最高分为93,去掉最高分和最低分,其余得分为86,86, 87, 89, 92,故平均分为(86+86+87+89+92)与=88, S 甲?=5.2;乙选手评委打出的最低分为79,最高分为93,去掉最高分和最低分,其余得分为84, 84,84, 86, 87,故平均分为(84+84+86+84+87)与=85, S乙 2=1.6 ,,乙选手的数据波动小.【点评】本题考查茎叶图,考查一组数

37、据的平均数与方差,考查处理一组数据的方法,是一个基础题.21. (2015?固原校级模拟)为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.卜面是该生7次考试的成绩.数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的理由;(2)已知该生的物理成绩 y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?(已知 88 X94+83 >91+11708+92 X96+108 X104+100 M01+112 X106=70497, 882+832+1172+922+1082+1002+1122=70994)【考点】线性回归方程.【专题】概率与统计.【分析】(1)根据公式分别求出其平均数和方差,从而判断出结果;(2)分别求出6和;的值,代入从而求出线性回归方程,将y=115代入,从而求出【解答】解:(1)工=10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论