




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、整式的乘除与因式分解技巧性习题训练一、逆用哥的运算性质81.,2005200440.252./ 2 、2002( 3 )X(1.5)2003+( 1)20043 .若 x2n3,则 x6n .4 .已知:xm 3,xn2,求 x3m2n、x3m2n 的值。5,已知:2m a, 32n b,贝U23m10n=二、式子变形求值1 .若 m n10, mn24 ,则 m2n2.2 .已知 ab9, a b 3,求 a23abb2的值.,0191,3 .已知x2 3x 1 0,求x2 二的值。 x 224 .已知:x x 1x2 y 2 ,贝U x- xy =.25 . (2 1)(22 1)(24
2、1)的结果为.6 .如果(2a+2b+ 1) (2a + 2b-1)=63,那么 a+b 的值为7 .已知:a 2008x 2007, b 2008x 2008, c 2008x 2009, 求 a2 b2 c2 ab bc ac 的值。8 .若 n2 n 1 0,则 n3 2n2 2008 .9 .已知 x2 5x 990 0,求 x3 6x2 985x 1019 的值。10 .已知a2 b2 6a 8b 25 0,则代数式b旦的值是a b11 .已知:x2 2x y2 6y 10 0,贝(Jx , y 。三、式子变形判断三角形的形状1 .已知:a、b、c是三角形的三边,且满足 a2 b2
3、c2 ab bc ac 0,则该三角 形的形状是.2 .若三角形的三边长分别为a、b、c,满足a2b a2c b2c b3 0 ,则这个三角形是3 .已知a、b、c是AABC的三边,且满足关系式a2 c2 2ab 2ac 2b2,试判断 ABC 的形状。四、分组分解因式1 .分解因式:a21 + b2 2ab=2 .分解因式: 4x2 4xy y2 a2 五、其他992110021 .已知:mf=n+2, n2=n 2(mw n),求:m?2mn+ n3的值。12 .计算:1 22七年级整式复习a.单项式和多项式统称为整式。b代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但
4、除式或分母中不含变数者,则称为整式。(含有字母有除法运算的,那么式子叫做分式fraction.)c整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。d加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为哥的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数哥和负整数指数哥。整式和同类项1 .单项式(1)单项式的表示形式:1、数与字母的乘积这样的代数式叫做单项式2、单个字母也是单项式。3、单个的数是单项式 4、字母与字母相乘成为单项式 5、数与数相乘称为单项式(2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。如果一个单项式
5、,只含有数字因数,是正数的单项式系数为1 ,是负数的单项式系数为 一1。(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。2 .多项式(1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。一元N次多项式最多 N+1项(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。(3)多项式的排列:1 .把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降哥排列。2 .把一个多项式按某一个字母的指数从小到大的顺序排
6、列起来,叫做把多项式按这个字母升哥排列。由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。在做多项式的排列的题时注意:(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。b.确定按这个字母向里排列,还是向外排列。(3)整式:单项式和多项式统称为整式。(4)同类项的概念:所含字母相同,并且相同字母的次数也
7、相同的项叫做同类项,几个常数项也叫同类项。掌握同类项的概念时注意:1 .判断几个单项式或项,是否是同类项,就要掌握两个条件:所含字母相同。相同字母的次数也相同。2 .同类项与系数无关,与字母排列的顺序也无关。3 .几个常数项也是同类项。(5)合并同类项:1 .合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。2 .合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。3 .合并同类项步骤:.准确的找出同类项。.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。.写出合并后的结果。在掌握合并同类项时注意:1 .如果两个同类项的系数互为相反数,
8、合并同类项后,结果为 0.2 .不要漏掉不能合并的项。3 .只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。合并同类项的关键:正确判断同类项。整式和整式的乘法整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为哥的运算性质,法 则可以分为整式、除法,公式可以分为乘法公式、零指数哥和负整数指数哥。同底数哥的乘法法则:同底数哥相乘,底数不变指数相加。哥的乘方法则:哥的乘方,底数不变,指数相乘。积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的哥相乘。单项式与单项式相乘有以下法则:
9、单项式与单项式相乘,把它们的系数、同底数哥分别相乘,其余字母连同它的指数不变,作为积的因式。单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。平方差公式:两数和与这两数差的积等于这两数的平方差。完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。两数差的平方,等于这两数的平方和,减去这两积的2倍。同底数塞相除,底数不变,指数相减。整式复习题一、选择题。1.计算(-3) 2n+1+3?(-3) 2n结果正确的是()A
10、. 32n+2B. -32n+2C. 0D. 12.有以下 5 个命题:3a2+5a2=8a2品?m=2吊x3?x4=x12 (-3) 4?(-3) 2=-36 (x-y) 2?(y-x) 3=(y-x)中,正确命题个数有()A. 1个B. 2个C. 3个 D. 4个3.适合 2x(x-1)-x(2x-5)=12 的 x 值是()A. x=1B.x=2C. x=4D. x=04 .设(5a+3b) 2=(5a-3b) 2+M,则 M 的值是()A.30abB.60abC.15ab D.12ab5 .已知xa=3xb=5则x3a+2b的值为()A. 27B. 675C. 52D. 906 .-a
11、n与(-a)n的关系是()A.相等B.互为相反数C.当n为奇数时,它们相等;当n为偶数时,它们互为相反数D.当n为奇数时,它们互为相反数;当n为偶数时,它们相等B. (x+y)(x 2+y2)= x3+ y3D. (x-2y) 2=x2-2xy+4y 2)B. x2-2x+1= x(x-2)+1D. mx+my+nx+ny=(x+y)m+n(x+y)D. 27 .下列计算正确的是()A .(-4x)(2x 2+3x-1)=-8x 3-12x2-4xC. (-4a-1)(4a-1)=1-16a28 .下列从左到右的变形中,属于因式分解的是(A.( x+1)( x-1)=- x 2-1C. a2-
12、b2=(a+b)(a-b)9 .若 x2+mx-15=(x+3)(x+n),贝U m 的值为()A. -5B. 5C. -210 . 4(a-b)2-4(b-a)+1分解因式白结果是()_2A.(2a-2b+1)2C. (2a-2b-1)2二填空题。B. (2a+2b+1)D. (2a-2b+1) (2a-2b-1)11 .计算 3xy2 - (-2xy)= 12 .多项式6x2y-2xy 3+4xyz的公因式是13 .多项式(mx+8)(2-3x)展开后不含x项,则m=14 .设 4x2+mx+121 是一个完全平方式 ,贝U m=15 .已知 a+b=7,ab=12,则 a2+b2=三.解
13、答题(共55分)16.计算(a 2)4a-(a 3)2a317.计算(5a 3b) (-4abc) (-5ab)18. 已知22n+1 +4n=48, 求 n 的值 .19. 先化简,再求值(x+3)(x-4)-x(x-2) , 其中 x=1120. 利用乘法公式计算1.02X0.98(2) 9921.因式分解4x-16x 34a(b-a)-b222.23.a+b=3, ab= -12,求下列各式的值 .(x+my)(x+ny)=x 2+2xy-6y 2,求 -(m+n) ?mn 的值 .(1)a2+b2(2) a2-ab+b2附加题。1 .你能说明为什么对于任意自然数n,代数式n(n+7)-
14、(n-3)(n-2)的值都能被6整除吗?2 .已知a,b,c是4ABC的三边的长,且满足:a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状.期末整式复习题答案. 选择题 ( 共 10 题 每小题 3 分 共 30 分 )1. C , 2. B 3. C 4. B 5. B 6. C 7. C 8. C 9.C10. A二.填空题(每题3分共15分)11. -6x2y312. 2xy(3x-y 2+2z)13.1214.44 15.25二解答题(共55分)16 .解:原式=a8a-a6a3= a 9-a 9= 017 .解:原式=(-20a4b2c)(-5ab)= 100 a5b3c
15、18 .解:22n+1+4n=4822n . 2+ 22n = 4822n (1+2)=4822n = 1622n =24n=219 .解:原式=x2-4x+3x-12-x 2+2x=x-12把X=11代入x-12得:x-12=-120 . (1)解:原式=(1+0.02)(1-0.02)=1-0.004=0.9996(2)解:原式=(100-1)2=10000-200+1=980121 .解:原式=4x(1-4 x2)=(1+2x)(1-2x)22 .解:原式=4ab-4a2-b2 =-(4a2-4ab+ b2 )=- (2a-b) 223 .解:(x+my)(x+ny)=x 2+2xy-6y 2, x2+(m+n)xy+mny 2= x2+2xy-6y 2即:m+n=2mn=-6-(m+n) mn=(-2)(-6)=1224 .(1)解:a2+b2=a2+2ab+b2 -2ab=(a+b)2- 2ab把 a+b=3, ab= -12 代入(a+b) 2- 2ab 得:(a+b) 2- 2ab=9+24=33(2)解:a2-ab+b2=a2-ab+3ab+ b2-3ab=a2+2ab+b2 -3ab=(a+b) 2-3ab把 a+b=3, ab=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行客户经理个人心得体会模版
- 2025年绿化养护个人工作方案
- 医生职业生涯中的多元发展机会探索
- 卤素的知识点总结模版
- 区块链技术开启智能办公新纪元
- 医学影像设备市场需求与商业机遇分析
- 2025年初中语文新教师年度考核个人总结模版
- 小学生劳动最光荣演讲稿简短
- 小学暑期校本培训计划
- 小学家长学校工作汇报材料
- VDA6.3-2023版培训教材课件
- 皮瓣移植护理与病例介绍课件
- 河北新化股份有限公司锅炉技改项目(噪声、固体废物)竣工环境保护验收报告
- 2016赋安消防JB-QBH-FS5101W 火灾报警控制器
- 金蝶云星空操作手册V3
- 2025年江苏南京地铁运营有限责任公司招聘笔试参考题库含答案解析
- SZDB∕Z 317-2018 大中型商场、超市安全防范规范
- (高清版)DB37∕T 4394.3-2023 政务云平台 第3部分:服务质量评价指标
- 网箱养殖物联网标准研究-洞察分析
- 印刷行业安全培训
- 保护患者隐私制度流程
评论
0/150
提交评论