




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、相似三角形基本知识知识点一:放缩与相似形1 .图形的放大或缩小,称为 图形的放缩运动。2 .把形状相同的两个图形说成是 相似的图形,或者就说是相似性。注意:相似图形强调图形形状相同,与它们的位置、颜色、大小无关。相似图形不仅仅指平面图形,也包括立体图形相似的情况。我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相 等,对应边的长度成比例。注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段
2、有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。a、b的长度分别是mr n,那么就说这两条线段a m的比是a: b=m: n (或b n )2、比的前项,比的后项:两条线段的比a: b中。a叫做比的前项,b叫做比的后项。说明:求两条线段的比时,对这两条线段要用同一单位长度。a c3、比例:两个比相等的式子叫做比例,如 b da c4、比例外项:在比例b d (或a:a c5、比例内项:在比例b d (或a:b=c: d)中a、d叫做比例外项。b=c: d)中b、c叫做比例内项。a6、第四比例项:在比例bcd (或 a: b= c: d)中,d叫a、b、c的第四比例项。a b7
3、、比例中项:如果比例中两个比例内项相等,即比例为b a (或a:b=b:c时,我们把b 叫做a和d的比例中项。8.比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长a c度的比相等,即一 一(或a: b=c: d),那么,这四条线段叫做成比例线段,简称比例线b d段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质ad bc(两外项的积等于两内项积)a c b d2.反比性质:b d a c (把比的前项、后项交换)3.更比性质(交换比例的内项或外项):a b,(交换内项)c da -d £,(交换外项)b d
4、bad b.(同时交换内外项)c a4 .合比性质:a - ab c-d (分子加(减)分母,分母不变) b d b d注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间badc发生同样和差变化比例仍成立.如:a cabcdabcd5 .等比性质:(分子分母分别相加,比值不变.)mace(b d f n 0),那么nb d f注意:(i)此性质的证明运用了 “设 k法”,这种方法是有关比例计算,变形中一种常用方法.(2) 应用等比性质时,要考虑到分母是否为零.(3) 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割A
5、C BC1)定义:在线段AB上,点C把线段AB分成两条线段 AC和BC(AC > BC),如果 生AB AC即AC2=abx BC,那么称线段 AB被点C黄金分割,点 C叫做线段AB的黄金分割5 1 一点,AC与AB的比叫做黄金比。其中 AC AB=0.618AB。22)黄金分割的几何作图已知:线段AB.求作:点C使C是线段AB的黄金分割点M= - AB作法:过点B作BDL AB,使 2连结 AR 在 DA上截取 DE=DB在AB上截取AC=AE则点C就是所求作的线段 AB的黄金分割点.黄金分割的比值为:AC_ SC _ -75-1触we 2 .(只要求记住)3)矩形中,如果宽与长的比是
6、黄金比,这个矩形叫做黄金矩形。知识点四:平行线分线段成比例定理 (一)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比 例. 已知 l 1/ 12/ l 3,AD 1BE 1C F可得幽里或幽BC EF AC DF2 .推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比 例.(1)是“ A”字型(2)是“ 8”字型 经常考,关键在于找AD AEf BD EC . AD AE _由DE/ BC可得: 或 或 .此推论较原定理应用更加广DB EC AD EA AB AC泛,条件是平行.3 .推论的逆定理:如果一条直线截三角形的两边
7、(或两边的延长线)所得的对应线段 成比例.那么这条直线平行于三角形的第三边.(即利用比例式证平行线)4 .定理:平行于三角形的一边,并且和其它两边相交的直线 ,所截的三角形的三边 与原 三角形三边对应成比例. 5 .平行线等分线段定理:三条平行线截两条直线,如果在一条直线上截得的线段相 等,难么在另一条直线上截得的线段也相等。 三角形一边的平行线性质定理定理:平行于三角形一边的直线截其他两边所得的线段对应成比例。几何语言 "BE中BD /CEAB AD 上上.bc 'DE简记:了卞AB AD BC DE上 上 下 下归纳:AC AE和AC AE推广:类似地还可以得到全全和全全
8、 三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例. 三角形一边的平行线的判定定理三角形一边平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.三角形一边的平行线判定定理推论如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 平行线分线段成比例定理1.平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例用符号语言表示:AD/ BE/ CF,ABBCDE BC,EF ACEF AB,DF AC
9、DEDF2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等m公口 F一士一ADPBEPCF用符号语百表不:AB BC.DE DF重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍 知识点三:相似三角形1、相似三角形1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相 似三角形。几种特殊三角形的相似关系:两个全等三角形一定相似。两个等腰直角三角形一定相似。两个等边三角形一定相似。两个直角三角形和两个等腰三角形不一定相似
10、。补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等)2)性质:两个相似三角形中,对应角相等、对应边成比例。3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。如4ABC与4DEF相似,记作 ABC DEF o相似比为k。4)判定:定义法:对应角相等,对应边成比例的两个三角形相似。三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三 角形相似。三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多)判定定理2:如果一个三
11、角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.直角三角形相似判定定理:d.斜边与一条直角边对应成比例的两直角三角形相似。.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成 的两个直角三角形也相似。斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似补充一:直角三角形中的相似问题:射影定理:CC2=AD BRAC2=AD AB,BC2=BD BA(在直角三角形
12、的计算和证明中有广泛的应用)补充二:三角形相似的判定定理推论 推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。相似三角形的性质相似三角形对应角相等、对应边成比例.相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比 (对应边的比).相似三角形对应面积的比等于相似比的 平方.2、相似的应用:位似1)定义:如果两个多边形不仅相似,而且对应
13、顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。需注意:位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形。两个位似图形的位似中心只有一个。两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。位似比就是相似比。2)性质:位似图形首先是相似图形,所以它具有相似图形的一切性质。位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)。每对位似对应点与位似中心共线,不经过位似中心的对应线段平行。巩固练习:典型例题例1、.弦AB和CD相交于。
14、o内一点P求证:PA PB=PC PD例2:如图, ABC中,AD是/ BAC的平分线,AD的垂直平分线交 AD于E,交BC的延长线于F求证:4ABFs ACAF例 3、如图:在 Rt ABC 中,ZABC=900 ,BD±AC 于 D,若 AB=6 ;AD=2 ;贝U AC=BD=; BC=例4、如图:在Rt ABC中, 长线交BA的延长线于F, 求证:AB : AC=DF : BFB/ABC=900 , BD ±AC 于 D ,若 E 是 BC 中点,ED 的延例5如图:小明想测量一颗大树CB 上,测得 CD=4m,BC=10m , 那么树的高度是多少?AB的高度,发现
15、树的影子恰好落在土坡的坡面CD和地面CCD与地面成30度角,且测得1米竹杆的影子长为 2米,针对性练习1、判断所有的等腰三角形都相似.(所有的直角三角形都相似.(所有的等边三角形都相似.(所有的等腰直角三角形都相似.(2、Rt ABC勺斜边AB上有一动点P (不与点A B重合),过P点作直线截 ABC使截得的三角形与 ABCf似,则满足这样条件的直线共有 多少条,请你画出来。3 .如果两个相似三角形的面积之比为1:9,则它们对应边的比为 0对应高的比为 。周长的比为一4 .如果两个相似三角形的面积之比为2:7,较大三角形一边上的高为 ,则较小三角形对应边上的高为。10.如图,小华在晚上由路灯A
16、走向路灯B,当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部,当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路次T B的底部,已知小华的身高是1.60m,两个路灯的高度都是AP =x(m)。(1)求两路灯之间的距离;常见的相似三角形小结:(2)当小华走到路灯B时,他在路灯下的影子是多少?ACDCA、巩固练习:1、有一张比例尺为1 4000的地图上,一块多边形地区的周长是260cm,面积是 250cm,则这个地区的实际周长是m ,面积是 m2、有一个三角形的边长为3, 4, 5,另一个和它相似的三角形的最小边长为7,则另一个三角形的周长为,面积是。3、两个相似三角形的对
17、应角平分线的长分别为10cm和20cm,若它们的周长的差是60cm,则较大的三角形的周长是,若它们的面积之和为 260cm2,则较小的三角形的面积为cm2 4、照相机镜头的取景框长 16毫米。为了风景照的视觉效果 最好,人像应在取景框长的黄金分割点处。如图,要拍左侧的 风景,人站在右侧,则人像应距左边框 毫米。5、如图,若A ABC的中线 AD和中线BE交于点G, AABG的面积如图,若A ABC的中线AD和中线BE交于点G, AABG的面积为4, A ABC的面积为 6、如图,矩形 ABCD43, AE± BD于 E,若 BE=4, DE=9,则矩形的面积是。7、下列各组的两个图形
18、,一定相似的是()A、两条对角线分别对应成比例的两个平行四边形;日有一个角对应相等的两个菱形;C 等腰梯形的中位线把它分成的两个等腰梯形;D、对应边成比例的两个多边形。9、如图,在平行四边形 ABCD43,已知AE交BC于点E,交BD于点F,BEC且 BE"=EF - EA 求证:aB"=BF - BD10、如图,在 ABC中,已知 EF/ AC, D是BC上一点,连接AR则 ABM4BEF的面积相等。求证:bE"=BD- BQ11、如图,由边长为 1的25个小正方形组成的正方形网格上有一个 ABQ在网格上画出一个与 ABC相似且面积最大的 A1BG,使它的三个顶
19、点都落在小正方形的顶点上,求 A1B1C1的最大面积。三、课后练习1、如果 ABCsa' B' C',相似比为k (kw1),则k的值是()A. /A: /A'C. /B: /B'D. BC: B' C'2、若ABCsa' B' C' , / A=40A. 30°3、三角形三边之比和是()A. 15cmB. 50°,/ C=110°C. 40,则/ B'等于()3: 5: 7,与它相似的三角形最长边是D. 70°21cm,另两边之B. 18cmC. 21cm4、如图A
20、B / CD / EF,则图中相似三角形的对数为(A. 1对B. 2对5、AABCA A1B1C1,相似比为 2: 34,则 ABC与 A2B2c2的相似比为(C. 3对 A1B1C1s4A2B2c2, )D. 24cmD. 4对相似比为5:200km )D6、在比例尺1: 10000 的地图上,相距2cm 的两地的实际距离是( )A 200cmB 200dmC 200mD7、已知线段a=10,线段b是线段a上黄金分割的较长部分,则线段 b的长是(D8、则下列各式中不正确的是( )D9、已知 ABC 中,D、E 分别在 AB、AC 上,且 AE=1.2 , EC=0.8 , AD=1.5 ,
21、DB=1 ,则下列式子正确的是( )D.10、 如 图在 ABC 中DE / AC,贝 U DE :AC=()A. 8: 3 B. 3: 811、计算C. 8: 5D. 5: 82)已知:且2a b 3c=21 ,求 a, b , c的值.AB、It12、在等边 ABC中,P是BC上一点,AP的垂直平分线分别交 AC 于 M、N,求证: MBPspcn.相似三角形经典大题解析281.如图,已知直线11 :y x 2与直线i2:y 2x 16相交于点C, l1、L分别交x轴于 33A B两点.矩形 DEFG的顶点D、E分别在直线11、L上,顶点F、G都在x轴上,且点G与点B重合.(1)求 ABC
22、的面积;(2)求矩形DEFG的边DE与EF的长;(3)若矩形DEFG从原点出发,沿x轴的反方向以每秒1个单位长度的速度平移, 设移动时间为t(0 w t w 12)秒,矩形DEFG与 ABC重叠部分的面积为 S,求S关于t的函数关系式,并写出相应的t的取值范围.一 ,2(1)解:由-x8 ,一0,得x 4. A点坐标为4,0 .3由2x 16 0,得x 8. B点坐标为8,0 . AB 8412.28X -.33解得2x 16.5,.6.C点的坐标为-11 -SaabcAB,yC12 6 36)22. 一,一八2-8八(2)解:二,点 D 在 11上且 xDxB8,yD -8 -8.33D点坐
23、标为8,8.又,一点E在12上且yE yD 8,2xe 16 8. Xe 4.E点坐标为4,8. OE 8 4 4, EF 8.(3)解法当00t 3时,如图1,矩形DEFG与4ABC重叠部分为五边形CHFGR ( t 0时,为四边形CHFG ).过C作CM RtARGBRtACMB.(图2)BGBM收,即LCM 3RGRG62t.Q RtAAFHs RtA AMC,& ABC& BRG & AFH 362tI8 t4t238时,16 t3如图4432,为梯形面积,(9=2(83t)2t, 32、4-(4 t)38o2t3 83803当8 t 12时,如图3,为三角形面
24、积,12ts 。8 T)(12 t)23t28t 4832.如图,矩形ABCD中,AD3厘米,AB a厘米(a 3) .动点M , N同时从B点出发,分别沿 B A, B C运动,速度是1厘米/秒.过 M作直线垂直于 AB ,分别 交AN , CD于P, Q .当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.(1)若a 4厘米,t 1秒,则PM 厘米;(2)若a 5厘米,求时间t,使PNBs/Xpad ,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形P
25、QDA ,梯形PQCN的面积都相等?若存在,求 a的值;若不存在,3【答案】解: (D PM ,4 t 2,使PNBsPAD,相似比为3: 2(3) Q PM ± AB, AMP abc ,CB ± AB, AMPPM AM 口 PM即BN AB tABC , at,Q PM at(a t)QM当梯形PMBN与梯形PQDA的面积相等,即(QP AD)DQ(MP BN)BM卷 3 (a 1) a2-(a t) t t化简得t 26a6 a6aQt < 3,-6a- 0 3,则6 aa< 6, 3 a<6,(4) Q3 a< 6时梯形PMBN与梯形PQD
26、A的面积相等梯形PQCN的面积与梯形PMBN的面积相等即可,则 CNPMt6a-(a t) 3 t,把t 代入,解之得aa6 a273 ,所以所以,存在a ,当a 2 J3时梯形PMBN与梯形PQDA的面积、梯形PQCN的面积相等.3.如图,已知 ABC是边长为6cm的等边三角形,动点 P、Q同时从A、B两点出发,分别 沿AB、BC匀速运动,其中点 P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到 达点C时,P、Q两点都停止运动,设运动时间为t (s),解答下列问题:(1)当t=2时,判断 BPQ的形状,并说明理由;3 t(a 1)3 a(2)设 BPQ的面积为S (cm2),求
27、S与t的函数关系式;(3)作QR/BA交AC于点R,连结 PR,当t为何值时, APRA PRQ?【答案】 解: BPQ是等边三角形,当t=2时,AP=2 X 1=2,BQ=2X 2=4,所以 BP=AB-AP=6-2=4,所以BQ=BP又因为/ B=6C°,所以 BPQ等边三角形.(2)过 Q作 QH AB,垂足为 E,由 QB=2y,得 QE=2t sin60 0= J3t,由 AP=t,得 PB=6-t,所以 SA BPQ=1 X BPX QE=1 (6-t) X <3 t= t 2+373 t ; 222(3)因为 QR/ BA,所以/ QRCW A=60°,
28、 / RQCW B=60°,又因为/ C=6C0,所以 QRB等边三角形,所以 QR=RC=QC=6-2t因为 BE=BQ cos600= - X 2t=t,2所以EP=AB-AP-BE=6-t-t=6-2t, 所以EP/ QR,EP=Q即以四边形EPRQ平行四边形,所以 PR=EQ=3 t,又因为/ PEQ=9。所以/ APR=Z PRQ=90.因为 APR- PRQ,/00 QR 口h 6 2t6所以/ QPR=z A=60,所以 tan60 =,即< 3 ,所以 t=,所以当t= 6时,APK PRQ 54 .在直角梯形 OABC 中,CB/OA, /COA = 90o,
29、 CB=3, OA=6, BA=3/5.分别以 OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段 OC、OB上的点,OD=5, OE = 2EB,直线DE交x轴于点F.求 直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N.使以0、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由."分)TW-. v n f FkF M-H p(1)作附3#轴尸也乩 则四边唐"4纥为母擢.-,- f;f f 3 » < I 步,n 用=。4
30、 - 0时三日一3二3.在 NrAMflff 中.5 -、&ia -AH1 = /(3丫5 - 3-6. T2分, 戊 出的小际为(i,崩. +.(3分1 h 件KC. I触产点6期雷。M二 八上5 AflftH . li 4 i l» ii hii(4 分)依=硬=及 kur.2EB nti fM 制rx.51一 “口,.N;22 QC an>i 3 "*, j - j 作 "A ,心=2, EJ4./ 点N的平除为(2. 41 . - (5分) 乂: 点仙般杯为(0. 5), 设 他匕优的解析式为1 E瓦 叫也一25一 :直线,初的髀断式为t尸-
31、I黯 答之 存在 * (£令)i如图L 1 ffff = mi = r. t)小时,同速唯为要服一fi- V/J11 物于点 Pt M WPr?TW, .-. MPDAFOU.If产 Thi八 疥T=而、江 i/ 冲*一。时.一尸5=。,祈用"。.上*般的坐标为。% U3*“ = 1*在 Ri AfWF 率 /" = yOrr + or - /5? + ioj 至 5 6,& ”的坐尿为,丸3方)二点八的堂看角(*嬴傅,-2加图九 刃0。= 3时,巴方拶加心”为踵拶.需长AV火I轮子点汽M口p I T 轴,'/ A m ft白线)=; *节r. &
32、#163;'没w点坐标为t。. 9 t方3 £tit% * t 产/=W.uf | eV/热出处困打一 *97) T .MO ?八.2二口(去L J. 点M的飞标为(J葡|r.ew,一' t r -3 如如,当=M 曲形门加八为受形.旌接日必交他毒北 耐”Lj 口介/糖靠找共分,;. 京、的牛林为卜3争)券I所述,“ % L方呻点v /j - 押:* 煦A的整标为3* 3). ( 12介. f |4 分)1 分别为,>( -?亦“仔). 4# S>.5.小丽参加数学兴趣小组活动,提供了下面3个有联系的问题,请你帮助解决:(1)如图1,正方形 ABCD中,作
33、 AE交BC于E , DF AE交AB于F,求证:AE DF ;(2)如图2,正方形ABCD中,点E, F分别在AD, BC上,点G, H分别在AB, CD上,且EF GH ,求变的值;GH(3)如图3,矩形 ABCD中,AB a , BC b ,点E, F分别在 AD, BC上,且EF GH ,求生的值. GH(第23题图1)(第23题图2)N(第23题图3)5J»i : i H出lEX-屈可米出上通尸上小J *1由n的4*心司击出aAREHA皿F,即见相U三曲IT的性舄用可镀等,:2 rAJtRE-xCCfJI-S U)前延。如同才相,解皆;麟:(1 ) TDF_LAEi二/AE
34、6二9口" -广:BAE=/AFD, 又二 RE = AD,ZAB-ZDAF=SO&,-'- 3AEE 空 白DAE,* AE-DF - (4分)(2)作AM#EF交EC于M, 作DM GHAeTJI j 划AM=EF* DM“口.由 f 1 )知,AM=DJGEF 即有二(4分)(3)作儿M N EF交BC于M 作 ZXM II GH 交 AB 于 N 则出二防,加二期 产,的1 DN又 Z8 航= NZMM=?T,/AM _ AB _ a.西FF息P _a. .而一晨6 .如图,在等腰梯形 ABCD 中,AD / BC , AB DC 5, AD 6, BC 12 .动点P从D点出发沿DC以每秒1个单位的速度向终点 C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.(1)梯形ABCD的面积等于 ;(2)当PQ / AB时,P点离开D点的时间等于 秒;(3)当P, Q, C三点构成直角三角形时,P点离开D点多少时间?(2)将原题中正方形改为矩形(如图46),且AB=a , BC=b , CE=ka , CG=kb (a7 .如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论