




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于多数据融合传感器的分布式温度控制系统摘要: 在过去的几十年,温度控制系统已经被广泛的应用。对于温度控制提出了一种基于多传感器数据融合和CAN总线控制的一般结构。一种新方法是基于多传感器数据融合估计算法参数分布式温控系统。该系统的重要特点是其共性,其适用于很多具体领域的大型的温度控制。实验结果说明该系统具有较高的准确性、可靠性,良好的实时性和广泛的应用前景。关键词: 分布式控制系统;CAN总线控制;智能CAN节点;多数据融合传感器。1介绍 分布式温度控制系统已经被广泛的应用在我们日常生活和生产,包括智能建筑、温室、恒温车间、大中型粮仓、仓库等。这种控制保证环境温度能被保持在两个预先设定的温度
2、间。在传统的温度测量系统中,我们用一个基于温度传感器的单片机系统建立一个RS-485局域网控制器网络。借助网络,我们能实行集中监控和控制.然而,当监测区域分布更广泛和传输距离更远,RS-485总线控制系统的劣势更加突出。在这种情况下,传输和响应速度变得更低,抗干扰能力更差。因此,我们应当寻找新的通信的方法来解决用RS-485总线控制系统而产生的问题。在所有的通讯方式中,适用于工业控制系统的总线控制技术,我们可以突破传统点对点通信方式的限制、建立一个真正的分布式控制与集中管理系统,CAN总线控制比RS-485总线控制系统更有优势。比方更好的纠错能力、改善实时的能力,低本钱等。目前,它正被广泛的应
3、用于实现分布式测量和范围控制。 随着传感器技术的开展,越来越多的系统开始采用多传感器数据融合技术来提高他们的实现效果。多传感器数据融合是一种范式对多种来源整合数据,以综合成新的信息,比其他局部的总和更加强大。无论在当代和未来,系统的低本钱,节省资源都是传感器中的一项重要指标。2分布式架构的温度控制系统 分布式架构温度控制系统如图中所示的图1。可以看出,这系统由两个模块两个智能CAN节点和一个主要的控制器组成。每个模块局部执行进入分布式架构。下面的是简短的描述下各模块。主要控制器 作为系统的主要控制器,这主pc能和智能CAN节点通信。它致力于监督和控制整个系统,系统配置、显示运行状况、参数初始化
4、和协调各局部间的关系。更重要的是,我们能打印或储存系统的历史温度的数据,这对分析系统性能是非常有用的。智能CAN节点 每一个温度控制系统的智能CAN节点有五个局部:MCU一个单片机,A/D转换单元,温度监测单元传感器群,数字显示器,激发器一个冷却单元和供暖单元。接下来介绍智能CAN节点的工作原理。 在实际操作中,我们划分控制的目标进入一些单元,储存智能CAN节点在一些典型的单元。在每个节点,单片机借助A / D转换单位从温度测量传感器收集温度数据。同时,它执行根本的数据融合运算获得运算的结果,更接近实际。数字显示器及时显示融合节点的结果,所以我们能及时了解在每个控制单元所处的环境温度。 通过比
5、拟融合值用主控制器构建一个,这样智能CAN节点可以通过相应的加热或冷却装置实现反应控制各单元。如果在特别的智能CAN节点融合结果大于设定值,冷却单位将开始工作。相反,如果在节点融合的结果低于设定值加热单位将开始工作。用这种方法,我们不仅能监控环境温度,还能做相应的触发器来实现温度的自动调节。与此同时,每个CAN节点发送数据帧到CAN总线,CAN总线将告知在着单元中的主控制器这温度值,那么这控制器能便利的作出是否修改这参数的决定。自从这CAN节点有调节温度的单元在,整个房间的温度将保持均匀。更重要的是,我们也可以通过在主pc上修改温度的设定值来控制这智能节点。 一般来说,处理器不擅长即时的复杂的
6、数据处理和数据融合,所以如何选择适宜的数据融合算法对系统变得至关重要。后一节中,我们将介绍适合于智能CAN节点的数据融合方法。4.多传感器数据融合 旨在利用数据融合在分布式温度控制系统中来消除不确定性,获得更精确、可靠是比从限定的传感器的测量数据的算数平均值更重要。当一些传感器的温度传感器变为无效的,这智能CAN节点还可以通过熔断这些信息而从有用的传感器获得精确温度。实测数据的一致性核实 在我们设计的分布式温度控制系统的温度测量的过程中,突发性干扰或设备故障的影响不可防止的产生测量误差。所以在数据融合前我们应该消除错误的误差。 我们可以利用系统中配备的少量传感器用散点图发消除这个测量误差。用参
7、数来代表数据分布结构包括中值TM,上四位数 Fv,下四位数FL和分散四位数dF. 人们认为每个传感器在温度控制系统的温度测量所得独立。在系统中,有八个传感器在各智能CAN节点的温度传感器群。所以我们在每个CAN节点同一时刻能获得8个温度值。我们安排收集到的温度数据序列由小到大:T1, T2, , T8 在序列中,T1是最低位而T8是最高位。我们定义TM为: 上四位数Fv是区间TM, T8的中值,低四位数 Fl是区间T1, TM的中值,这四位数的离散是:。 该公式,一个是常数,取决于系统测量误差, 通常值是0.5,1.0,2.0等等。在数列中其余的测量值都被看作是于有效值一致的。在智能CAN节点
8、的单片机智将把一致的测量值融合。5. 温度测量的数据融合的举例 分布式温度控制系统运用于一间温室, 我们从8个温度传感器获得一组8个温度值如下八个温度测量值的结果, 测量误差是.这剩下的七个传感器被分成两个传感器组,S1, S3, S7 是第一组,S2, S4, S6, S8 是第二组。两组测量数据的算术平均和标准偏差分别如下: 根据公式(13), 我们可以用七个测量温度确定温度融合值。融合温度的结果的误差是。 很明显,数据融合测量结果比算术的平均值更接近于实际值。在实际操作中,测量温度可能是很分散的变得更大的监测区域,数据融合将更加明显提高了测量精度。 这基于多数据融合传感器的分布式温度控制
9、系统是通过CAN总线构建。它充分利用了FDCS即时总线控制系统的特点。数据采集,数据融合,系统控制用智能CAN节点得到实现,而系统管理通过主控制器host PC被实现。通过使用CAN总线与数据融合技术系统的可靠性和实时的能力被大大提高了。我们确定它在将来会得到广泛的应用。DISTRIBUTED TEMPERATURE CONTROL SYSTEM BASED ON MULTI-SENSOR DATA FUSIONAbstract: Temperature control system has been widely used over the past decades. In this pap
10、er, a general architecture of distributed temperature control system is put forward based on multi-sensor data fusion and CAN bus. A new method of multi-sensor data fusion based on parameter estimation is proposed for the distributed temperature control system. The major feature of the system is its
11、 generality, which is suitable for many fields of large scale temperature control. Experiment shows that this system possesses higher accuracy, reliability, good realtime characteristic and wide application prospectKeywords: Distributed control system; CAN bus; intelligent CAN node; multi-sensor dat
12、a fusion.1. Introduction Distributed temperature control system has been widely used in our daily life and production, including intelligent building, greenhouse, constant temperature workshop, large and medium granary, depot, and so on1. This kind of system should ensure that the environment temper
13、ature can be kept between two predefined limits. In the conventional temperature measurement systems we build a network through RS-485 Bus using a single-chip metering system based on temperature sensors. With the aid of the network, we can carry out centralized monitoring and controlling. However,
14、when the monitoring area is much more widespread and transmission distance becomes farther, the disadvantages of RS-485 Bus become more obvious. In this situation, the transmission and response speed becomes lower, the anti-interference ability becomes worse. Therefore, we should seek out a new comm
15、unication method to solve the problems produced by RS-485 Bus.During all the communication manners, the industrial control-oriented field bus technology can ensure that we can break through the limitation of traditional point to point communication mode and build up a real distributed control and ce
16、ntralized management system. As a serial communication protocol supporting distributed real-time control, CAN bus has much more merits than RS-485 Bus, such as better error correction ability, better real-time ability, lower cost and so on. Presently, it has been extensively used in the implementati
17、on of distributed measurement and control domains. With the development of sensory technology, more and more systems begin to adopt multi-sensor data fusion technology to improve their performances. Multi-sensor data fusion is a kind of paradigm for integrating the data from multiple sources to synt
18、hesize the new information so that the whole is greater than the sum of its parts 345. And it is a critical task both in the contemporary and future systems which have distributed networks of low-cost, resource-constrained sensors2. Distributed architecture of the temperature control system The dist
19、ributed architecture of the temperature control system is depicted in the Figure 1. As can be seen, the system consists of two modulesseveral intelligent CAN nodes and a main controller. They are interconnected with each other through CAN bus. Each module performs its part into the distributed archi
20、tecture. The following is a brief description of each module in the architecture. 31main controllerAs the systems main controller, the host PC can communicate with the intelligent CAN nodes. It is devoted to supervise and control the whole system, such as system configuration, displaying running con
21、dition, parameter initialization and harmonizing the relationships between each part. Whats more, we can print or store the systems history temperature data, which is very useful for the analysis of the system performance3.2. Intelligent CAN node Each intelligent CAN node of the temperature control
22、system includes five units: MCUa single chip, A/D conversion unit, temperature monitoring unitsensor group, digital display unit and actuatorsa cooling unit and a heating unit. The operating principle of the intelligent CAN node is described as follows. In the practical application, we divide the re
23、gion of the control objective into many cells, and lay the intelligent CAN nodes in some of the typical cells. In each node, MCU collects temperature data from the temperature measurement sensor groups with the aid of the A/D conversion unit. Simultaneously, it performs basic data fusion algorithms
24、to obtain a fusion value which is more close to the real one. And the digital display unit displays the fusing result of the node timely, so we can understand the environment temperature in every control cell separately. By comparing the fusion value with the set one by the main controller, the inte
25、lligent CAN node can implement the degenerative feedback control of each cell through enabling the corresponding heating or cooling devices. If the fusion result is bigger than the set value in the special intelligent CAN node, the cooling unit will begin to work. On the contrary, if the fusion resu
26、lt is less than the set value in the node the heating unit will begin to work. By this means we can not only monitor the environment temperature, but also can make the corresponding actuator work so as to regulate the temperature automatically. At the same time every CAN node is able to send data fr
27、ame to the CAN bus which will notify the main controller the temperature value in the cell so that controller can conveniently make decisions to modify the parameter or not. Since the CAN nodes can regulate the temperature of the cell where they are, the temperature in the whole room will be kept ho
28、mogeneous. Whats more, we can also control the intelligent node by modifying the temperatures setting value on the host PC.Generally, the processors on the spot are not good at complex data processing and data fusing, so it becomes very critical how to choose a suitable data fusion algorithm for the
29、 system. In the posterior section, we will introduce a data fusion method which is suitable for the intelligent CAN nodes。4. Multi-sensor data fusion The aim to use data fusion in the distributed temperature control system is to eliminate the uncertainty, gain a more precise and reliable value than
30、the arithmetical mean of the measured data from finite sensors. Furthermore, when some of the sensors become invalid in the temperature sensor groups, the intelligent CAN node can still obtain the accurate temperature value by fusing the information from the other valid sensors. 4.1. Consistency ver
31、ification of the measured data During the process of temperature measurement in our designed distributed temperature control system, measurement error comes into being inevitably because of the influence of the paroxysmal disturb or the equipment fault. So we should eliminate the careless mistake be
32、fore data fusion. We can eliminate the measurement errors by using scatter diagram method in the system equipped with little amount of sensors. Parameters to represent the data distribution structure include medianTM, upper quartile numberFv, lower quartile numberFL and quartile dispersiondF. It is
33、supposed that each sensor in the temperature control system proceeds temperature measurement independently. In the system, there are eight sensors in each temperature sensor group of the intelligent CAN node. So we can obtain eight temperature values in each CAN node at the same time. We arrange the
34、 collected temperature data in a sequence from small to large: T1, T2, , T8 In the sequence, T1 is the limit inferior and T8 is the limit superior. We define the medianTM as: (1) The upper quartileFv is the median of the interval TM, T8.The lower quartile numberFL is the median of the interval T1, T
35、M.The dispersion of the quartile is: 2We suppose that the data is an aberration one if the distance from the median is greater than adF, that is, the estimation interval of invalid data is: (3) In the formula, a is a constant, which is dependent on the system measurement error, commonly its value is
36、 to be 0.5, 1.0, 2.0 and so on. The rest values in the measurement column are considered as to be the valid ones with consistency. And the Single-Chip in the intelligent CAN node will fuse the consistent measurement value to obtain a fusion result 5. Temperature measurement data fusion experiment By
37、 applying the distributed temperature control system to a greenhouse, we obtain an array of eight temperature values from eight sensors as followsThe mean value of the eight measurement temperature result isComparing the mean value (8)T with the true temperature value in the cell of the greenhouse,
38、we can know that the measurement error is +. After we eliminate the careless error from the fifth sensor using the method introduced before, we can obtain the mean value of the rest seven data (7)T=, the measurement error is . The seven rest consistent sensor can be divided into two groups with sens
39、or S1, S3, S7 in the first group and sensor S2, S4, S6, S8 in the second one. The arithmetical mean of the two groups of measured data and the standard deviation are as follows respectively:According to formula (13), we can educe the temperature fusion value with the seven measured temperature value
40、. The error of the fusion temperature result is . It is obvious that the measurement result from data fusion is more close to the true value than that from arithmetical mean. In the practical application, the measured temperature value may be very dispersive as the monitoring area becomes bigger, da
41、ta fusion will improve the measuring precision much more obviously.6. Conclusions The distributed temperature control system based on multi-sensor data fusion is constructed through CAN bus. It takes full advantage of the characteristics of field bus control system-FDCS. Data acquisition, data fusion and system controlling is carried out in t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购买农用车协议合同
- 评估项目居间合同协议
- 起重机买卖租赁合同协议
- 订制衣柜付款合同协议
- 湖南省邵阳市邵东市第七中学2024-2025学年高一下学期4月期中地理试题(原卷版+解析版)
- 《第03节 探究外力做功与物体动能变化的关系》教学设计
- 楼顶安装升降机合同协议
- 商场摊位转让合同协议
- 品牌代言合同协议
- 和谐协议书范本
- (市质检)莆田市2025届高中毕业班第四次教学质量检测试卷语文试卷(含答案解析)
- 瓷砖空鼓装修合同协议
- 中职生职业生涯课件
- 烟台2025年烟台市蓬莱区“蓬选”考选90人笔试历年参考题库附带答案详解
- 2025年浙江省生态环境厅所属事业单位招聘考试备考题库
- 入团考试测试题及答案
- 河南省普通高中2024-2025学年高三下学期学业水平选择性模拟考试(四)历史试题(原卷版+解析版)
- 一例盆腔脏器脱垂全盆底重建术患者的护理
- 旅游消费者决策
- 化妆品公司生产部奖惩管理制度
- 家长近视防控课件
评论
0/150
提交评论