下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 学生利用自习先预习课本第11页-12页10分钟,然后35分钟独立做完学案。【学习目标】1、掌握三角形全等的“角边角”“角角边”条件能运用全等三角形的条件,解决简单的推理证明问题2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程3、积极投入,激情展示,体验成功的快乐。教学重点:已知两角一边的三角形全等探究教学难点:灵活运用三角形全等条件证明【学习过程】一、预习案1、复习思考(1)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?(2)在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分
2、成哪两种呢?2、探究一:两角和它们的夹边对应相等的两个三角形是否全等? (1)动手试一试。已知:ABC 求作:,使=B, =C,=BC,(不写作法,保留作图痕迹)(2) 把剪下来放到ABC上,观察与ABC是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(三):两角和它们的夹边对应相等的两个三角形 (可以简写成“ ”或“ ”)(4)用数学语言表述全等三角形判定(三)在ABC和中, ABC 3、探究二。两角和其中一角的对边对应相等的两三角形是否全等(1)如图,在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用前面学过的判定方法来证明你的结论吗?21世
3、纪教育网版权所有(2)归纳;由上面的证明可以得出全等三角形判定(四):两个角和其中一角的对边对应相等的两个三角形 (可以简写成“ ”或“ ”)21教育网(3)用数学语言表述全等三角形判定(四)在ABC和中, ABC 二、探究案1、例1、如下图,D在AB上,E在AC上,AB=AC,B=C求证:AD=AE2已知:点D在AB上,点E在AC上, BEAC, CDAB,AB=AC,求证:BD=CE三、检测案3、如图,在ABC中,B=2C,AD是ABC的角平分线,1=C,求证AC=AB+CE3、如图,在ABC中,B=2C,AD是ABC的角平分线,1=C,求证AC=AB+CE四、课堂小结(1)今天我们又学习了两个判定三角形全等的方法是:(2)三角形全等的判定方法共有 3、4.满足下列哪种条件时,就能判定ABCDEF ( )A. AB=DE,BC=EF, AE; B. AB=DE,BC=EF, CFC. AE,AB=EF, BD; D. AD,AB=DE, BEA F C D12EB5.如图所示,已知AD,12,那么要w w w .x k b 1.c o m得到ABCDEF,还应给出的条件是:( )A. BE B.ED=BCC. AB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行税务考试题库及答案
- 2026年广东金融学院单招职业适应性测试必刷测试卷及答案1套
- 2026年黑龙江冰雪体育职业学院单招职业适应性测试必刷测试卷汇编
- 2026年北京科技大学天津学院单招职业倾向性考试题库汇编
- 2026年荆州职业技术学院单招职业适应性测试必刷测试卷完美版
- 2026年福建体育职业技术学院单招职业倾向性测试题库带答案
- 2026年青岛航空科技职业学院单招职业技能测试题库必考题
- 2026年重庆工程职业技术学院单招职业技能考试必刷测试卷必考题
- 2025年黑龙江省事业单位联考真题试卷 公共基础知识及参考答案详解
- 2025广西来宾象州县以直接考核方式定向招聘服务基层项目人员20人参考题库附答案详解(夺分金卷)
- 慈溪拆除施工方案
- 第四单元第1课《提炼民族文化符号》教学课件-2025-2026学年人美版(2024)初中美术八年级上册
- 国家基本药物制度解读
- 十年(2016-2025)高考英语真题分类汇编:专题16 阅读理解新闻报道及其它(全国)(解析版)
- 全国大学生职业规划大赛《汽车制造与试验技术》专业生涯发展展示【高职(专科)】
- 腾讯云从业者课件
- 《美丽的规则》教学课件
- 排舞概述课件
- 公交安全隐患培训课件
- 轨电车试验线工程项目可行性研究报告
- 2024年卫生高级职称面审答辩(内科学)(副高面审)模拟试题及答案
评论
0/150
提交评论