




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上必修1 函数的基本性质专题复习(一)函数的单调性与最值知识梳理1.函数的单调性定义:设函数的定义域为,区间 如果对于区间内的任意两个值,当时,都有,那么就说在区间上是单调增函数,称为的单调增区间如果对于区间内的任意两个值,当时,都有,那么就说在区间上是单调减函数,称为的单调减区间2.函数的最大(小)值设函数的定义域为如果存在定值,使得对于任意,有恒成立,那么称为的最大值;如果存在定值,使得对于任意,有恒成立,那么称为的最小值。热点考点题型探析考点1 函数的单调性【例】试用函数单调性的定义判断函数在区间(1,+)上的单调性.【巩固练习】证明:函数在区间(0,1)上的单调
2、递减.考点2 函数的单调区间1.指出下列函数的单调区间:(1); (2).2. 已知二次函数在区间(,4)上是减函数,求的取值范围.【巩固练习】1函数的减区间是( ). A . B. C. D. 2在区间(0,2)上是增函数的是( ). A. y=x+1 B. y= C. y= x24x5 D. y=3. 已知函数f (x)在上单调递减,在单调递增,那么f (1),f (1),f ()之间的大小关系为 .4.已知函数是定义在上的增函数,且,求的取值范围.5. 已知二次函数在区间(,2)上具有单调性,求的取值范围.考点3 函数的最值【例】求函数的最大值和最小值:【巩固练习】1函数在区间 上是减函
3、数,则y的最小值是_.2. 的最大(小)值情况为( ). A. 有最大值,但无最小值 B. 有最小值,有最大值1 C. 有最小值1,有最大值 D. 无最大值,也无最小值3. 某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润. 4. 已知函数在区间上有最大值3,最小值2,求的取值范围.(二)函数的奇偶性知识梳理1函数的奇偶性的定义:对于函数的定义域内任意一个,都有或,则称为奇函数. 奇函数的图象关于原点对称
4、。对于函数的定义域内任意一个,都有或,则称为偶函数. 偶函数的图象关于轴对称。通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)热点考点题型探析考点1 判断函数的奇偶性【例】判断下列函数的奇偶性:(1); (2);(3).考点2 函数的奇偶性综合应用【例1】已知是奇函数,是偶函数,且,求、.【例2】已知是偶函数,时,求时的解析式.【例3】设函数是定义在R上的奇函数,且在区间上是减函数。试判断函数在区间上的单调性,并给予证明。【巩固练习】1函数 (|x|3)的奇偶性是( ). A奇函数 B. 偶函数 C. 非奇非偶函数 D. 既奇又偶函数2.若奇函数在3, 7上是增函数,且最小值是1,则它在上是( ). A. 增函数且最小值是1 B. 增函数且最大值是1 C. 减函数且最大值是1 D. 减函数且最小值是13.若偶函数在上是增函数,则下列关系式中成立的是(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年LED户外显示屏创新设计与市场拓展合同
- 冷链物流中心智能化设备升级改造安装工程合同
- 二零二五年度海上货物运输与船舶动力系统改造合同
- 二零二五年度搬家搬运与搬运保险代理合同
- 2025版粮油行业风险管理与保险代理合同
- 2025版餐饮企业员工劳动争议调解合同
- 二零二五年度大数据与智慧物流合同
- 2025版生态修复与环境保护工程施工合同标准文本
- 2025年昌江黎族自治县菜篮子发展有限公司公开招聘实习生笔试参考题库附带答案详解
- 南通市中学数学试卷
- 【完整版】2025年二级建造师《建筑实务》考试真题及答案
- 水库维修承包合同协议书范本
- 建筑公司分包合同管理办法
- 2025至2030苏打水行业发展趋势分析与未来投资战略咨询研究报告
- 2025年浙江省中考英语真题(解析版)
- 【生物 四川卷】2025年四川省高考招生统一考试真题生物试卷(真题+答案)
- 近几年大学英语四级词汇表(完整珍藏版)
- Q∕GDW 12106.3-2021 物联管理平台技术和功能规范 第3部分:应用商店技术要求
- 人教版七年级数学下册计算类专项训练卷【含答案】
- 材料物理之材料的结合方式PPT课件
- 2022年医德医风考试试题及答案
评论
0/150
提交评论