高考数学第一轮直线与圆锥曲线的位置关系_第1页
高考数学第一轮直线与圆锥曲线的位置关系_第2页
高考数学第一轮直线与圆锥曲线的位置关系_第3页
高考数学第一轮直线与圆锥曲线的位置关系_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、g3.1083直线与圆锥曲线一、知识要点1.关于直线与圆锥曲线的交点问题:一般方法是用解方程组的方法求其交点的坐标.2.判断直线与圆锥曲线交点个数问题:即判断方程组解的个数.3.直线与圆锥曲线位置关系的判定:通法是消去一个未知数若得到的是关于另一未知数的一元二次方程,可用根的判别式来判断,注意直线与圆锥曲线相切必有一个公共点,对圆与椭圆来说反之亦对,但对双曲线和抛物线来说直线与其有一公共点,可能是相交的位置关系.4.直线与圆锥曲线相交的弦长计算:(1)连结圆锥曲线上两点的线段称为圆锥曲线的弦;(2)易求出弦端点坐标时用距离公式求弦长;(3)一般情况下,解由直线方程和圆锥曲线方程组成的方程组,得

2、到关于x(或y)的一元二次方程,利用方程组的解与端点坐标的关系,结合韦达定理得到弦长公式:|AB|=.5.关于相交弦的中点问题:涉及到弦的中点时,常结合韦达定理.6.曲线关于直线对称问题:注意两点关于直线对称的条件:(1)两点连线与该直线垂直;(2)中点在此直线上.二、基础训练1直线与抛物线,当 时,有且只有一个公共点;当 时,有两个不同的公共点;当 时,无公共点2若直线和椭圆恒有公共点,则实数的取值范围为 3抛物线与直线交于两点,且此两点的横坐标分别为,直线与轴的交点的横坐标是,则恒有( ) 4椭圆与直线交于两点,的中点为,且的斜率为,则的值为 ( )(A)(B)(C)(D) 5已知双曲线

3、,过点作直线,使与有且只有一个公共点,则满足上述条件的直线共有 ( ) 条 条 条 条三、例题分析例1过点的直线与抛物线交于两点,若,求直线的斜率例2已知直线和圆:相切于点,且与双曲线相交于两点,若是的中点,求直线的方程例3.过椭圆2x2+y2=2的一个焦点的直线交椭圆于P、Q两点,求POQ面积的最大值例4(05天津卷)抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 00)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足.()求抛物线C的焦点坐标和准线方程;()设直线AB上一点M,满足,证明线段PM的中点在y轴上;()当

4、=1时,若点P的坐标为(1,-1),求PAB为钝角时点A的纵坐标的取值范围.四、作业 同步练习 g3.1083直线与圆锥曲线1以点为中点的抛物线的弦所在的直线方程为( ) 2斜率为的直线交椭圆于两点,则线段的中点的坐标满足方程( ) 3过点与抛物线只有一个公共点的直线的条数是( ) 4(05福建卷)已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是( )ABCD5.椭圆4x2+9y2=36的焦点为F1,F2,点P为其上动点,当F1PF2为钝角时,点P的横坐标的取值范围是 .6已知双曲线与直线的两个交点关于轴对称,则这两个交点的

5、坐标为 7与直线的平行的抛物线的切线方程是 8. (05山东卷)设双曲线的右焦点为,右准线与两条渐近线交于P、两点,如果是直角三角形,则双曲线的离心率9已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数). ()求椭圆的方程; ()设Q是椭圆上的一点,且过点F、Q的直线与y轴交于点M. 若,求直线的斜率.10一个正三角形的三个顶点都在双曲线的右支上,其中一个顶点是双曲线的右顶点,求实数的取值范围11已知直线与双曲线相交于两点是否存在实数,使两点关于直线对称?若存在,求出值,若不存在,说明理由12、(05上海)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分. 已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M. (1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论