维设计2014届高考数学理总复习课件第九章:第八节n次独立重复试验与二项分布_第1页
维设计2014届高考数学理总复习课件第九章:第八节n次独立重复试验与二项分布_第2页
维设计2014届高考数学理总复习课件第九章:第八节n次独立重复试验与二项分布_第3页
维设计2014届高考数学理总复习课件第九章:第八节n次独立重复试验与二项分布_第4页
维设计2014届高考数学理总复习课件第九章:第八节n次独立重复试验与二项分布_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、知识能否忆起知识能否忆起 一、条件概率及其性质一、条件概率及其性质 1条件概率的定义条件概率的定义 设设A,B为两个事件,且为两个事件,且P(A)0,称,称P(B|A)为在事件为在事件A发生的条件下,事件发生的条件下,事件B发生的条件概率发生的条件概率2条件概率的求法条件概率的求法求条件概率除了可借助定义中的公式,还可以借助古求条件概率除了可借助定义中的公式,还可以借助古典概率公式,即典概率公式,即P(B|A) .3条件概率的性质条件概率的性质(1)条件概率具有概率的性质,即条件概率具有概率的性质,即0P(B|A)1.(2)如果如果B和和C是两个互斥事件,则是两个互斥事件,则P(BC|A)P(

2、B|A)P(C|A) 二、事件的相互独立性二、事件的相互独立性 1设设A,B为两个事件,若为两个事件,若P(AB) 则称则称事件事件A与事件与事件B相互独立相互独立 2如果事件如果事件A与与B相互独立,那么相互独立,那么 与与 , 与与 , 与与 也都相互独立也都相互独立 三、二项分布三、二项分布 在在n次独立重复试验中,用次独立重复试验中,用X表示事件表示事件A发生的次数,发生的次数,设每次试验中事件设每次试验中事件A发生的概率为发生的概率为p,则,则P(Xk)_ ,k0,1,2,n. 此时称随机变量此时称随机变量X服从二项分布,记作服从二项分布,记作 ,并称并称 为成功概率为成功概率P(A

3、)P(B)ABXB(n,p)p)nkABABp小题能否全取小题能否全取答案:答案:C 2(教材习题改编教材习题改编)某人射击,一次击中目标的概率为某人射击,一次击中目标的概率为 0.6,经过,经过3次射击,此人至少有两次击中目标的概率次射击,此人至少有两次击中目标的概率 为为()答案:答案:A 3把一枚硬币连续抛两次,记把一枚硬币连续抛两次,记“第一次出现正面第一次出现正面”为事件为事件A,“第二次出现正面第二次出现正面”为事件为事件B,则,则P(B|A)等于等于 ()答案:答案:A4一个箱子里装有一个箱子里装有4个白球和个白球和3个黑球,一次摸出个黑球,一次摸出2个球,个球,在已知它们的颜色

4、相同的条件下,该颜色是白色的概在已知它们的颜色相同的条件下,该颜色是白色的概率为率为_5设袋中有大小相同的设袋中有大小相同的4个红球与个红球与2个白球,若从中有放个白球,若从中有放回地依次取出一个球,记回地依次取出一个球,记6次取球中取出次取球中取出2个红球的概个红球的概率为率为_2“相互独立相互独立”与与“事件互斥事件互斥”的区别:的区别:两事件互斥是指两个事件不可能同时发生,两事件两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件发生与否对另一事件发生的概率相互独立是指一个事件发生与否对另一事件发生的概率没有影响两事件相互独立不一定互斥没有影响两事件相互独立不一定互斥条条 件

5、件 概概 率率 例例1(2012河南模拟河南模拟)如图,如图,EFGH是以是以O为圆心,半径为为圆心,半径为1的圆的内接正方形,将一颗豆的圆的内接正方形,将一颗豆子随机地扔到该圆内,用子随机地扔到该圆内,用A表示事件表示事件“豆子落在豆子落在正方形正方形EFGH内内”,B表示事件表示事件“豆子落在扇形豆子落在扇形OHE(阴影部分阴影部分)内内”,则,则P(B|A)_.条件概率的求法可用如下两种方法:条件概率的求法可用如下两种方法:1(2012潍坊模拟潍坊模拟)市场上供应的灯泡中,甲厂产品占市场上供应的灯泡中,甲厂产品占70%,乙厂占乙厂占30%,甲厂产品的合格率是,甲厂产品的合格率是95%,乙

6、厂产品的合,乙厂产品的合格率是格率是80%,则从市场上买到一个是甲厂生产的合格灯,则从市场上买到一个是甲厂生产的合格灯泡的概率是泡的概率是 ()A0.665B0.56C0.24 D0.285解析:记解析:记A“甲厂产品甲厂产品”,B“合格产品合格产品”,则,则P(A)0.7,P(B|A)0.95,故,故P(AB)P(A)P(B|A)0.70.950.665.答案答案:A相互独立事件的概率相互独立事件的概率1对于复杂的相互独立事件概率的求法,尤其是含对于复杂的相互独立事件概率的求法,尤其是含有有“恰好恰好”“至少至少”“至多至多”型问题要恰当分类,若分类较多时,型问题要恰当分类,若分类较多时,可

7、利用其对立事件求概率可利用其对立事件求概率答案答案:C独立重复试验与二项分布独立重复试验与二项分布 例例3(2012哈师大附中模拟哈师大附中模拟)某市统计局就本地居某市统计局就本地居民的月收入调查了民的月收入调查了10 000人,并根据所得数据画了样本的人,并根据所得数据画了样本的频率分布直方图频率分布直方图(每个分组包括左端点,不包括右端点,每个分组包括左端点,不包括右端点,如第一组表示收入在如第一组表示收入在1 000,1 500),单位:元,单位:元) (1)估计居民月收入在估计居民月收入在1 500,2 000)上的概率;上的概率; (2)根据频率分布直方图算出样本数据的中位数;根据频

8、率分布直方图算出样本数据的中位数; (3)若将频率视为概率,从本地随机抽取若将频率视为概率,从本地随机抽取3位居民位居民(看作看作有放回的抽样有放回的抽样),求月收入在,求月收入在2 500,3 500)上的居民数上的居民数X的分的分布列布列 自主解答自主解答(1)依题意及频率分布直方图知,居民月依题意及频率分布直方图知,居民月收入在收入在1 500,2 000)上的概率约为上的概率约为0.000 45000.2. (2)由频率分布直方图知,中位数在由频率分布直方图知,中位数在2 000,2 500)内,内,设中位数为设中位数为x,则,则0.000 25000.000 45000.000 5(

9、x2 000)0.5,解得,解得x2 400.1判断某事件发生是否是独立重复试验,关键有两点:判断某事件发生是否是独立重复试验,关键有两点:(1)在同样的条件下重复,相互独立进行在同样的条件下重复,相互独立进行(2)试验结果要么发生,要么不发生试验结果要么发生,要么不发生2判断一个随机变量是否服从二项分布,要看两点:判断一个随机变量是否服从二项分布,要看两点:(1)是否为是否为n次独立重复试验次独立重复试验(2)随机变量是否为在这随机变量是否为在这n次独立重复试验中某事件发生次独立重复试验中某事件发生的次数的次数答案:答案:C (1)假设这名射手射击假设这名射手射击5次,求恰有次,求恰有2次击

10、中目标的次击中目标的概率;概率;(2)假设这名射手射击假设这名射手射击5次,求有次,求有3次连续击中目标,次连续击中目标,另外另外2次未击中目标的概率;次未击中目标的概率;(3)假设这名射手射击假设这名射手射击3次,每次射击,击中目标得次,每次射击,击中目标得1分,未击中目标得分,未击中目标得0分,在分,在3次射击中,若有次射击中,若有2次连续击次连续击中,而另外中,而另外1次未击中,则额外加次未击中,则额外加1分;若分;若3次全击中,次全击中,则额外加则额外加3分,记分,记为射手射击为射手射击3次后的总的分数,求次后的总的分数,求的的分布列分布列2本题第本题第(2)问中因忽视连续三次击中目标

11、,另问中因忽视连续三次击中目标,另外两次未击中导致分类不准确外两次未击中导致分类不准确3正确区分相互独立事件与正确区分相互独立事件与n次独立重复试验是次独立重复试验是解决这类问题的关键解决这类问题的关键(1)求小明在投篮过程中直到第三次才投中的概率;求小明在投篮过程中直到第三次才投中的概率;(2)求小明在求小明在4次投篮后的总得分次投篮后的总得分的分布列的分布列1根据以往统计资料,某地车主购买根据以往统计资料,某地车主购买甲种保险的概率为甲种保险的概率为0.5,购买乙种保,购买乙种保险但不购买甲种保险的概率为险但不购买甲种保险的概率为0.3.设设各车主购买保险相互独立各车主购买保险相互独立教师

12、备选题(给有能力的学生加餐)(给有能力的学生加餐)解题训练要高效解题训练要高效见见“课时跟踪检课时跟踪检测(六十六)测(六十六)”(1)求该地求该地1位车主至少购买甲、乙两种保险中的一种位车主至少购买甲、乙两种保险中的一种的概率;的概率;(2)求该地的求该地的3位车主中恰有位车主中恰有1位车主甲、乙两种保险位车主甲、乙两种保险都不购买的概率都不购买的概率2(2012天津高考天津高考)现有现有4个人去参加某娱乐活动,该活动个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择为增加趣味性,约定:有甲、乙两个游戏可供参加者选择为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个

13、游每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为戏,掷出点数为1或或2的人去参加甲游戏,掷出点数大于的人去参加甲游戏,掷出点数大于2的人去参加乙游戏;的人去参加乙游戏;(1)求这求这4个人中恰有个人中恰有2人去参加甲游戏的概率;人去参加甲游戏的概率;(2)求这求这4个人中去参加甲游戏的人数大于去参加乙游戏的个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;人数的概率;(3)用用X,Y分别表示这分别表示这4个人中去参加甲、乙游戏的人数,个人中去参加甲、乙游戏的人数,记记|XY|.求随机变量求随机变量的分布列与数学期望的分布列与数学期望E()3学校游园活动有这样一个游戏项目:甲箱子里装有学校游园活动有这样一个游戏项目:甲箱子里装有3个个白球、白球、2个黑球,乙箱子里装有个黑球,乙箱子里装有1个白球、个白球、2个黑球,这个黑球,这些球除颜色外完全相同每次游戏从这两个箱子里各些球除颜色外完全相同每次游戏从这两个箱子里各随机摸出随机摸出2个球,若摸出的白球不少于个球,若摸出的白球不少于2个,则获奖个,则获奖(每次游戏结束后将球放回原箱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论