




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2例1设P是双曲线与 a分别是双曲线的左、右焦点.若|PFi |=3,则|PF? |=A. 1 或 5B.C. 7分析:根据标准方程写出渐近线方程,两个方程对比求出D. 9a的值,利用双曲线的定义求出三、典型例题选讲(一)考查双曲线的概念2y-=1上一点,双曲线的一条渐近线方程为 3x 2y=0, F1、F2 9| PF2 |的值.2x解::双曲线Bay23y-=1渐近线万程为y=±±x,由已知渐近线为 3x 2y=0,9a: a =丝二|PFi | -|PF21|=4,,|PF2 k±4+ |PFi |.PF1|=3,IPF2 |>0,,|PF2 |=7.
2、故选C.归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法.(二)基本量求解点,例2(2009山东理)设双曲线则双曲线的离心率为(B. 5解析:双曲线2x2a2 y b22x2aC.b2=1的一条渐近线与抛物线y = x2 +1只有一个公共D. V5=1的一条渐近线为b ,、y=-x,由方程组 aby x1y a x ,消去v,得y = x21后,故选D.所以b、2十1=0有唯一解,所以 = () 4=0以及直线与抛物线的位置关归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,只有一个公共点,则解方程组有唯一解. 本题较好地考查了基本概念、基本方法和基本技能.y=x2+1相切,例
3、3 (2009全国I理)设双曲线、_=1 (a>0, b>0)的渐近线与抛物线a2 b2则该双曲线的离心率等于()A. 3B.2 C.5 D. 6解析:设切点P(X0,y°),则切线的斜率为y |xc0 = 2x0 .由题意有yX0又有2,- r 2, b -/,b、2 二y0=X0+1,联立两式解得:X0=1j =2,e = Ji+()=V5 .因此选C.22x y例4 (2009江西)设F1和F2为双曲线 O 二 1(a A0,b >0)的两个焦点,若F1,a bP(0,2b)是正三角形的三个顶点,则双曲线的离心率为(D. 3B. 2解析:由jitan =62b
4、d c 222有 3c = 4b = 4(cc =2 a,故选B.归纳小结:注意等边三角形及双曲线的几何特征,JT 从而得出tan =6 2b=,体现数形结3合思想的应用.(三)求曲线的方程22_例5 (2009,北京)已知双曲线C:彳4 =1(a A0,b A0)的离心率为 J3,右准线方程 a b(1)求双曲线C的方程;(2)已知直线x y+m=0与双曲线 C交于不同的两点 A, B,且线段 AB的中点在圆x2 +y2 =5上,求m的值.分析:(1)由已知条件列出a,b,c的关系,求出双曲线 C的方程;(2)将直线与双曲线方程 联立,再由中点坐标公式及点在圆上求出m的值.解:(1)由题意,
5、得c 3 ,解得a = 1,c = 43.c3 a2b2 =c2 a2 =2 , 所求双曲线 C的方程为X2 -=1.2(2)设A、B两点的坐标分别为(K,y1Mx2,y2 ),线段AB的中点为M(%,y0),X2-y2=1 /曰 2 c 2c 一口一.八由2 得x -2mx -m -2=0 (判别式&A0),X y m = 0x1 x2ci 1 x0 m, y0 x0 m 2m222丁点 M (x0,y0 )在圆 x +y =5上,m2 +(2m 2 =5 , . . m = ±1 .另解:设A、B两点的坐标分别为(x1, y1 ),(x2, y2 r线段AB的中点为M(x
6、0,y0),2x2 y- =1,121由 ,,两式相减得(x+x2)(x1x2)-一(y1 + y2)(y1 -y2) =0.x2.H=12x221由直线的斜率为1, x0 = x1;2 ,y0 = y1;y2代入上式,得y0 = 2x0.22又M(y0,x0)在圆上,得y0 +x0 =5,又M(y0,x0)在直线上,可求得 m的值.归纳小结:本题主要考查双曲线的标准方程、圆的切线方程等基础知识, 考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.例6过M (1,1)的直线交双曲线x_L=1于a, b两点,若M为弦AB的中点,求直线42AB的方程.分析:求过定点M的直线方程,只
7、需要求出它的斜率.为此可设其斜率是k ,利用M为弦AB的中点,即可求得k的值,由此写出直线 AB的方程.也可设出弦的两端点坐标用 “点差法” 求解.解法一:显然直线AB不垂直于x轴,设其斜率是k ,则方程为y-1 = k(x-1).22x _ y_ =1由42一 消去 y 得(12k2)x2 4k(1 k)x2k2+4k6 = 0J-1 =k(x1)设A(x1,y) B(x2, y),由于M为弦AB的中点,所以x1 x22k(1 -k)1 -2k21=1,所以k =21一显然,当k=-时方程的判别式大于零 21所以直线AB的万程为y -1 = 2 (x -1),即x 2y +1 = 0 .解法
8、二:设人(",必),B(x2 ,y2),则x24 222殳一幺=142得(x -x2)(x x2) -2(V1 -Y2)(Y1 y2) =0.又因为 x1 +x2 =2,y +y2 = 2 ,所以 x1 -x2 =2(y1 y2).右 x1 二 x2,则 y1二y2,由x1*x2= 2, yI+ y2= 2 得 xI二 x2= 1,y1二y2= 1 .则点A B都不在双曲线上,与题设矛盾,所以x #x2.所以k =比笺=1.x1 -x2 21所以直线AB的方程为y -1 = 2 (x -1),即x 2y+1 = 0 .经检验直线x 2y+1 =0符合题意,故所求直线为 x2y+1 =
9、 0.解法三:设A (x, y),由于A、B关于点M (1, 1)对称,所以B的坐标为(2x,2 y),则(2-x)42x422,29消去平方项,得x2y+1=0.(2 - y) =1.2即点A的坐标满足方程,同理点 B的坐标也满足方程.故直线AB的方程为x -2y +1 =0 .归纳总结:由于双曲线(抛物线)不是“封闭”的曲线,以定点为中点的弦不一定存在,所 以在求双曲线(抛物线)中点弦方程时,必须判断满足条件的直线是否存在.(四)轨迹问题2 2例7已知点"他0,丫0)为双曲线 七)2=1 (b为正常数)上任一点,F2为双曲线的右8b2 b2焦点,过p作右准线的垂线,垂足为A ,连
10、接F2A并延长交y轴于P2.求线段P1 P2的中点P的轨迹E的方程.分析:求轨迹问题有多种方法,如相关点法等,本题注意到点P是线段P1 P2的中点,可利用相关点法.83Vc解:由已知得F2(3b,0), A(b, y0),则直线F2A的方程为:y = -(x-3b).3 b令 *=0得丫=9丫°,即 P2(0,9y0).x。x 二2y0 9y° 尸="= 5y°x =2x即 y代入%;522x0 y02 -2- = 1 得:8b2b24x28b22工=125b2'2 2即P的轨迹E的方程为- y 2 =1 . (x W R) 2b2 25b2归纳
11、小结:将几何特征转化为代数关系是解析几何常用方法. (五)突出几何性质的考查例8(2006江西)P是双曲线x-_L=1的右支上一点,M , N分别是圆(x + 5)2 + y2=4 916和(x5)2+y2 =1上的点,则|PM |PN |的最大值为()A.6B.7C.8D.9解析:双曲线的两个焦点 F1(5,0)与F2(5,0)恰好是两圆的圆心,欲使 |PM|PN|的值最大,当且仅当|PM |最大且|PN |最小,由平面几何性质知,点 M在线段PF1的延长线上,点N是线段PF2与圆的交点时所求的值最大.此时 |PM |-| PN |=(PFi +2)(PF2 -1) = PF1 - PF2
12、+3 = 9.因此选 D.例9(2009重庆)已知以原点O为中心的双曲线的一条准线方程为x = Y5 ,离心率e= J5 .5(1)求该双曲线的方程;(2)如图,点A的坐标为(-75,0) , B是圆x2 +(y-V5)2 =1上的点,点M在双曲线右支上,求 MA + MB的最小值,并求此时 M点的坐标.(2)利用双曲线的定义将分析:(1)比较基础,利用所给条件可求得双曲线的方程;MAMB转化为其它线段,再利用不等式的性质求解.曲线的方程为在5解:(1)由题意可知,双曲线的焦点在x轴上,故可设双22 52。乌=1 (a >0,b>0),设c = J0二斤,由准线方程为 x = Y5得"二a b5 c由e =而得c = J5. a_2解得a =1,c = J5.从而b =2,二该双曲线的方程为 x2工=1.4(2)设点D的坐标为(J5,0),则点A、D为双曲线的焦点,则 |MA| - |MD | = 2a =2 .所以 |MA | +|MB | = 2 + | MB | + | MD B 2 + | BD | .因为B是圆x2 +(y - 75)2 =1上的点,其圆心为c(o, J5),半径为1,故 |BD 问 CD|-1=而 + 1,从而 |MA| +|MB |> 2 + |BD|> 而+1 .当M , B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经济专业考试题库及答案
- 2025年气象知识在事业单位招聘中的重点与模拟题
- 2025年安徽省(安管人员)建筑施工企业安全员B证上机考试题库及答案
- 2025年股票投资分析与交易技巧预测试题集
- 2025年物流工程师面试题及解答指南
- 2025年农村金融服务与管理人才招聘面试题集与解析
- 桥梁基础知识课件
- 浙江诸暨市牌头中学2026届化学高一第一学期期中监测模拟试题含解析
- 2025年环境艺术设计师招聘考试模拟题及解析
- 2025年城市更新与可持续发展考试试题及答案
- 2025年中国漂白水洗猪鬃市场调查研究报告
- 模块十 轴测图的基本知识(课件)-中职高考《机械制图》一轮复习(高教版第5版)
- DB13-T 6050-2025 学校社会工作服务规范
- 红火蚂蚁咬伤急救
- 再回首二部合唱简谱金巍
- 2025年注册测绘师测绘综合能力的真题卷(附答案)
- 项目城市轨道交通风险管理与安全评估刘连珂
- 道路施工机械设备安全知识培训
- AI在护理查房中的应用
- 证券行业智能化投资组合管理方案
- 地理与劳动教育
评论
0/150
提交评论